Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reverse evolution

08.08.2006
Half-billion-year-old gene is reconstructed from two descendants

University of Utah scientists have shown how evolution works by reversing the process, reconstructing a 530-million-year-old gene by combining key portions of two modern mouse genes that descended from the archaic gene.

"It provides further evidence at the molecular level of how evolution has occurred and is occurring, and thus makes the process less mysterious," says Mario Capecchi, distinguished professor and co-chairman of human genetics at the University of Utah School of Medicine and an investigator with the Howard Hughes Medical Institute.

"We've shown some of the elements involved in the process of evolution by reversing this process and reconstructing a gene that later became two genes," he adds.

The study by Capecchi and postdoctoral fellow Petr Tvrdik was set for publication Monday, Aug. 7 in the August 2006 issue of the journal Developmental Cell.

The process of one gene splitting into multiple genes, which then mutate, "has occurred many times in evolution, but no one has put it back together again," Tvrdik says. "We are first to reconstruct an ancient gene. … We have proven that from two specialized modern genes, we can reconstruct the ancient gene they split off from. It illuminates the mechanisms and processes that evolution uses, and tells us more about how Mother Nature engineers life."

The ability to reconstruct an ancient gene from descendant genes also raises the possibility of a new type of gene therapy, in which a portion of a related gene could be inserted into a disease-causing mutant gene to restore its normal function and cure the disease, Capecchi and Tvrdik say.

Genes that Divided are Now Reunited

The study involved what are known as Hox genes, which are like orchestra conductors directing the actions of other genes during development of an animal embryo.

Until sometime between 530 million and 480 million years ago, early animals had 13 Hox genes. Then, in jawed fish – the last common ancestors of modern vertebrate animals – each Hox gene had split into four, so 13 became 52. Later, duplicate Hox genes either mutated in a way that proved useful, or vanished because they were redundant, so today in humans and other mammals there are 39 instead of 52 Hox genes.

The study focused on two modern Hox genes:

-- The Hoxa1 gene, which helps control how an embryo's brain stem develops and is compartmentalized into seven sections called rhombomeres. When Hoxa1 is disabled or "knocked out" in an embryonic mouse, the embryo dies shortly after birth because the brain stem is malformed, including the part necessary for breathing. (About 20 people with the same defect have been found among Apache and Navajo Indians in Arizona and in families in Turkey and Saudi Arabia. Their brain stem defects result in problems with breathing, hearing, balance and con-trol of the eyeballs.)

-- The Hoxb1 gene, which orders the formation of particular nerve cells in rhombomere 4 – nerves that ultimately control facial expressions in animals. When a mouse is born with a disabled Hoxb1 gene, it suffers facial paralysis, and is unable to blink its eyes, wiggle its whiskers or pull back its ears.

Tvrdik and Capecchi say that by combining critical portions of Hoxa1 and Hoxb1, they effectively recreated a gene with the function that the original Hox1 performed more than 530 million years ago.

The result: A mouse with a disabled Hoxb1 gene still was able to move eyelids, whiskers and ears because the reconstructed gene made up for the loss of Hoxb1.

How the Study was Conducted

Evolution proceeds as cells divide and each gene within them duplicates. Having two identical genes allows one to keep doing its normal job and the other can change, or mutate. Most mutations are for the worse and disappear. Others persist because they perform a new job that holds some advantage for allowing an organism to adapt. The quadrupling of Hox (and also other genes) a half-billion years ago provided animals with an advantage "because they had more genes to use for specialized jobs," including adapting to environmental changes, Tvrdik says.

Each gene is made of DNA. Some of the gene's DNA carries a code or blueprint that makes a protein to carry out some specific function in an organism. Some genetic mutations change this "coding region" and thus change the protein a gene makes.

Other mutations change other parts of the gene, known as "regulatory sequences," which decide when and where the gene and its protein act in an organism's body.

Because the gene's regulatory sequences can be 10 to 100 times larger than the gene's coding region, mutations are more likely there.

A key question was whether the Hoxa1 and Hoxb1 genes are different because their protein-coding regions have changed or their regulatory sequences have changed. So the scientists switched the two genes' coding regions. Each gene then produced the other gene's protein. Mice born with the switched genes were essentially normal.

That means the coding regions were interchangeable, and that evolution has changed each gene's regulatory sequence, not the protein-making coding region.

Next, Tvrdik and Capecchi took a small portion of the regulatory sequence from gene Hoxb1 (which controls facial expressions) and put it into Hoxa1, (which allows mice to breathe and survive after birth). And they disabled the remainder of Hoxb1.

Mice suffered facial paralysis when they were born with disabled Hoxb1 and without a portion of that gene inserted into the Hoxa1 gene. In response to a puff of air in the face, they couldn't blink their eyes, wiggle their whiskers and fold back their ears.

But when a portion of the Hoxb1 regulatory sequence was inserted into Hoxa1, the new gene performed the jobs of both genes. Mice born with the combined gene still were able to breathe and survive thanks to the Hoxa1 gene, and they could move their facial muscles, thanks to the small bit of the Hoxb1's regulatory sequence.

Capecchi says that by combining parts of both Hoxa1 and Hoxb1, he and Tvrdik reversed evolution.

"What we have done is essentially go back in time to when Hox1 did what Hoxa1 and Hoxb1 do today," he says. "It gives a real example of how evolution works because we can reverse it."

The hybrid Hoxa1-Hoxb1 gene is not fully identical to the half-billion-year-old Hox1 because it lacks Hoxc1 and Hoxd1. But Hoxc1 vanished during evolution because it was redundant, and Hoxd1 plays a minor role. So the combined Hoxa1-Hoxb1 gene performs essentially all the functions of the ancient gene, Capecchi says.

A New Approach to Gene Therapy?

Capecchi says scientists hypothesized that when a gene duplicates into identical genes, mutations can occur so the once-identical duplicates evolve to split the original job – a process is called subfunctionalization.

"We are giving an example of how it actually happened – what elements are involved and how you initially separate the functions, and how can you reconstruct the [ancient] gene to put the functions back again," Capecchi says.

The study raises the prospect of a new approach to gene therapy, Tvrdik says.

If a gene duplicated into two and they evolved separate functions in the body – for example, one gene works in the liver and the other in the brain – then "if the brain version of the gene becomes mutated or deleted [to cause a disease] and its gene replacement is difficult or impractical, then our work shows that the 'liver copy' potentially could be recruited to do the brain functions," Tvrdik says.

In other words, regulatory elements from the brain gene might be inserted into the liver gene to reconstruct a gene similar to the normal brain gene.

Capecchi speculated on a possible example: a form of inherited anemia named beta-thalassemia, which occurs when a mutant beta hemoglobin gene results in faulty production of hemoglobin. The new study suggests it might be possible to use regulatory sequences from the faulty gene to activate a similar gene, essentially creating an embryonic or juvenile beta hemoglobin gene that could make hemoglobin normally during adult life.

Lee Siegel | EurekAlert!
Further information:
http://www.ucomm.utah.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>