Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientific issues associated with carbon-neutral energy sources such as cellulosic ethanol

08.08.2006
Addressed today at plant science conference by Prof. Chris Somerville

Professor Chris Somerville of the Carnegie Institution and Stanford University, explained advances in plant science research that are both needed and achievable to reduce costs and multiply current levels of production of biofuels from plant cellulose (biomass).

Somerville presented his talk, "Bioenergy: The 21st Century Challenge to Plant Biologists" at the Annual Meeting of the American Society of Plant Biologists (ASPB) today (4:30 p.m. Eastern Time August 5) in Boston's Hynes Convention Center. The presentation was part of the Major Symposium: "Plants Mitigating Global Change" organized by Professor Stephen Long of the University of Illinois at Urbana-Champaign.

Somerville noted the concept that CO2 emissions may negatively affect climate are not new.

"In 1895, Arrhenius presented a paper to the Stockholm Physical Society titled, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground in which he argued that increased concentration of atmospheric CO2, such as that caused by combustion of fossil fuel, would lead to the warming of the earth," Somerville commented. "It is apparent that he [Arrhenius] was correct and that we must develop alternative sources of energy."

The earth receives approximately 4,000 times more energy from the sun each year than the total projected human uses in the year 2050, Somerville commented. Green plants growing throughout the world capture the sun's (solar) energy and convert it to bio-chemical energy in a process called photosynthesis. There are vast energy supplies of renewable plant biomass growing throughout the nation and world. There is widespread interest in returning to the use of plants as widely used sources of renewable energy

"However, because of competing uses for land, a central challenge for 21st century biologists is to increase the efficiency of solar energy capture to the theoretical limit by rational methods. In order to accomplish this we need to acquire and integrate all aspects of knowledge about plant biology into a systems level understanding that can support an engineering approach to plant improvement," Somerville said.

Somerville explained specific areas of research that need to be addressed during his presentation August 5 in Boston. The Advanced Energy Initiative(AEI), a research initiative announced by President Bush in his 2006 State of the Union Address, embraces key recommendations of Somerville and the plant and microbiological science communities. Somerville called the AEI a visionary research initiative that will help transition the nation's transportation sector to use of domestically produced biofuels. Displacing use of gasoline with biofuels, such as cellulosic ethanol, will dramatically reduce emissions of stored carbon dioxide into the atmosphere, Somerville noted.

This past year, Somerville has been participating in workshops organized by the U.S. Department of Energy Office of Science to address the nation's renewable energy needs. The workshops provided information that contributed to the development of the Advanced Energy Initiative of President Bush. The Advanced Energy Initiative is a landmark research effort designed to help break the nation's addiction to oil. A member of the National Academy of Sciences, Somerville recently published the guest editorial in Science (June 2, 2006, Volume 312) concerning bioenergy research. He is a grantee of the DOE Office of Science's Basic Energy Sciences competitive grant awards program for Energy Biosciences research and member of the DOE Office of Science Biological and Environmental Research Advisory Committee (BERAC). He was the speaker on "Biofuels and the [DOE] Biofuels Workshop Report" at the July 11, 2006 meeting of BERAC.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>