Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers determine structure of smallpox virus protein bound to DNA

08.08.2006
Structure could aid in anti-viral drug design

Researchers at the University of Pennsylvania School of Medicine have determined the structure of an important smallpox virus enzyme and how it binds to DNA. The enzyme, called a topoisomerase, is an important drug target for coming up with new ways to fight smallpox. The researchers present their findings in the August 4 issue of Molecular Cell.

"This enzyme is one of the most closely studied DNA-modifying enzymes in biology," says Frederic D. Bushman, PhD, Professor of Microbiology, one of the senior authors. "The structure of the DNA complex has been long-awaited." DNA-modifying enzymes bind to specific sequences in the genetic code to aid in the many steps of DNA replication.

The smallpox virus is one of the most easily transmissible infectious diseases known to humans, resulting in up to 30 percent mortality. The efficiency with which it spreads, combined with the deadly nature of the disease, has raised fears that smallpox could be revived for use in bioterrorism. Knowing the exact three-dimensional structure of smallpox virus proteins could help researchers design antiviral agents, but few structures of whole viral proteins exist.

Poxviruses are large viruses that contain two strands of DNA and replicate themselves entirely in the cytoplasm of infected cells. Poxviruses do not take over the genetic machinery inside the nucleus of the host cell, as many viruses do. Because of this strategy, poxviruses encode many of the enzymes they need to replicate their own genes, and hence reproduce. One of these enzymes is a topoisomerase, which is used by the virus to relieve the excessive twisting of DNA strands that normally occurs during DNA replication and transcription of the viral genes. Upon initial infection, the poxviruses come already equipped with some proteins, including topoisomerases, to kick-start replication.

The structure was determined in a collaborative effort between the Bushman lab and the lab of the other senior author Gregory D. Van Duyne, PhD, Professor of Biochemistry and Biophysics and an Investigator with the Howard Hughes Medical Institute (HHMI). Using purified topoisomerase enzyme that had been expressed in bacterial cells, they bound the enzyme to short segments of DNA that contained the viral topoisomerase's specific recognition sequence. They then determined the three-dimensional structure of the topoisomerase-DNA complex using X-ray crystallography.

One of the primary differences between the viral topoisomerase enzyme and the closely related human enzyme that functions in the nucleus of all human cells is that the viral enzyme only relaxes supercoiled DNA when it binds to specific DNA sequences. The structure of the poxvirus topoisomerase-DNA complex provides some important clues about how this recognition and activation mechanism works.

"The more the viral enzyme differs from the human nuclear enzyme, the more likely it is that inhibitors could be developed that are specific to the viral enzymes," says Bushman.

Knowing the three-dimensional structure of the smallpox virus topoisomerase-DNA complex will also facilitate the design of agents to combat poxvirus infections. Topoisomerases are some of the most widely targeted proteins by drugs that are intended to inhibit growth of the cell. Drugs that target topoisomerases generally stabilize an intermediate of the enzyme's reaction in which one of the DNA strands is broken. If these breaks are not repaired, the DNA cannot be replicated and the cell dies.

In the case of smallpox virus, the hope is that drugs targeted to the viral topoisomerase enzyme will prevent viral replication through a similar mechanism. The X-ray structure provides a template for designing small molecules that could stabilize the broken DNA in the intermediate form, thereby killing smallpox virus particles.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>