Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some (bumblebees) like it hot

03.08.2006
Bumblebees prefer warmer flowers and can learn to use colour to predict floral temperature before landing, a new study reports.

Flower colour is traditionally viewed as a method by which a plant advertises its nectar, a sweet reward for ensuring pollination, to hungry insects.

However, a recent collaborative study by the University of Cambridge and Queen Mary University London has revealed that bees will choose flowers of a certain colour if they have learned that it indicates warmth as well.

Dr Heather Whitney, Miss Sarah Arnold, Dr Adrian Dyer and Dr Beverley Glover, Department of Plant Sciences, University of Cambridge, and Professor Lars Chittka, Queen Mary University London, published their findings in this week's issue of Nature.

Dr Whitney stated, "It has been observed that flowers with warming structures attract basking insects, and previous work has shown that insects can obtain a metabolic reward from warmer flowers. However, this is the first time it has been shown that insects can use other cues, such as colour, to preferentially seek out warmer flowers."

These findings indicate that varying temperatures of plants may be an adaptation to encourage pollinators to visit flowers. As flower temperature varies widely, it is believed that the heat may influence which plant the pollinator chooses to visit (depending on the insect's temperature preference).

Like many other insect pollinators, bumblebees invest energy in keeping their body temperature above the ambient level. On cold days, they must warm themselves up before they can fly far. Researchers discovered that, in an effort to conserve energy, bees will select warmer flowers identified by their colour to stay cosy. When tested, bumblebees consistently chose warmer flowers over cooler flowers containing the same nectar reward.

Dr Glover stated, "We're very excited by this result as it suggests that a whole range of structures act as potential pollinator attractants. We can now re-evaluate the roles of lens-shaped petal cells, sun-tracking by flowers, light and heat absorbing pigments and specialised surface structures, all of which may be part of a plant's bag of tricks for attracting pollinators."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>