Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some (bumblebees) like it hot

03.08.2006
Bumblebees prefer warmer flowers and can learn to use colour to predict floral temperature before landing, a new study reports.

Flower colour is traditionally viewed as a method by which a plant advertises its nectar, a sweet reward for ensuring pollination, to hungry insects.

However, a recent collaborative study by the University of Cambridge and Queen Mary University London has revealed that bees will choose flowers of a certain colour if they have learned that it indicates warmth as well.

Dr Heather Whitney, Miss Sarah Arnold, Dr Adrian Dyer and Dr Beverley Glover, Department of Plant Sciences, University of Cambridge, and Professor Lars Chittka, Queen Mary University London, published their findings in this week's issue of Nature.

Dr Whitney stated, "It has been observed that flowers with warming structures attract basking insects, and previous work has shown that insects can obtain a metabolic reward from warmer flowers. However, this is the first time it has been shown that insects can use other cues, such as colour, to preferentially seek out warmer flowers."

These findings indicate that varying temperatures of plants may be an adaptation to encourage pollinators to visit flowers. As flower temperature varies widely, it is believed that the heat may influence which plant the pollinator chooses to visit (depending on the insect's temperature preference).

Like many other insect pollinators, bumblebees invest energy in keeping their body temperature above the ambient level. On cold days, they must warm themselves up before they can fly far. Researchers discovered that, in an effort to conserve energy, bees will select warmer flowers identified by their colour to stay cosy. When tested, bumblebees consistently chose warmer flowers over cooler flowers containing the same nectar reward.

Dr Glover stated, "We're very excited by this result as it suggests that a whole range of structures act as potential pollinator attractants. We can now re-evaluate the roles of lens-shaped petal cells, sun-tracking by flowers, light and heat absorbing pigments and specialised surface structures, all of which may be part of a plant's bag of tricks for attracting pollinators."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>