Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key event in cell death occurs as single, quick event

03.08.2006
St. Jude researchers discover process is not step-by-step as previously thought; discovery unlocks more information on how cells 'commit suicide'

Scientists at St. Jude Children's Research Hospital have demonstrated that a key event during apoptosis (cell suicide) occurs as a single, quick event, rather than as a step-by-step process. Apoptosis eliminates extraneous cells from the developing body; and disposes of cells that sustain irreparable harm to their DNA or are infected with microorganisms. The researchers photographed individual cells undergoing that process, allowing investigators to observe the release of certain proteins from pores in the membranes of mitochondria. These cellular structures contain enzymes that extract energy from food molecules, and the space within the membrane surrounding them holds a variety of proteins that are released during apoptosis.

Results of the study indicate the formation of pores in the mitochondrial membranes is a rapid process that allows a nearly simultaneous rather than a sequential release of many apoptosis proteins, according to Douglas Green, Ph.D., chair of the St. Jude Department of Immunology. Green is senior author of a report on this work that appears in the August 1 issue of Proceedings of the National Academy of Sciences. The process of pore formation, called mitochondrial outer membrane permeabilization (MOMP), allows apoptosis proteins stored underneath the membrane to escape and orchestrate the cell's destruction.

MOMP is controlled by a family of proteins called Bcl-2; some of these support apoptosis and others interrupt the process. The pro- and anti-apoptotic Bcl-2 proteins cooperate to weigh and balance cell signals that promote survival or death, in this way determining the final outcome. During apoptosis, these proteins are either already on the mitochondrial membranes or migrate to the membranes, where they trigger MOMP.

"The slow, continuous release of one of the proteins, apoptosis-inducing factor (AIF), suggests that the pore formed during MOMP remains open for many hours," Green said. "Our finding of nearly simultaneous rather than sequential release of the mitochondrial membrane proteins helps to explain the timing of the movement of these apoptosis proteins following MOMP. The findings also suggest that release of these proteins is not controlled by multiple levels of regulators, but rather occurs as a single event."

The study also highlights the importance of the Bcl-2 family in regulating the formation of pores in the mitochondrial membrane and emphasizes how critical the formation of these pores is to the regulation of apoptosis, Green said.

The team found that after cells were treated with a chemical that triggers apoptosis, it took three to 10 minutes for several proteins, cytochrome c, Smac, Omi and adenylate kinase-2 to escape together immediately following MOMP.

However, the AIF protein escaped from the mitochondrial membrane much more slowly and incompletely, starting with the release of cytochrome c but continuing during the next few hours. The St. Jude researchers concluded that while AIF is known to regulate other cellular processes, the protein itself is not involved in triggering apoptosis. The researchers made the movement of the proteins visible by attaching fluorescent tags to make them glow when observed under a special microscope equipped with a laser that scanned the cells.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>