Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key event in cell death occurs as single, quick event

03.08.2006
St. Jude researchers discover process is not step-by-step as previously thought; discovery unlocks more information on how cells 'commit suicide'

Scientists at St. Jude Children's Research Hospital have demonstrated that a key event during apoptosis (cell suicide) occurs as a single, quick event, rather than as a step-by-step process. Apoptosis eliminates extraneous cells from the developing body; and disposes of cells that sustain irreparable harm to their DNA or are infected with microorganisms. The researchers photographed individual cells undergoing that process, allowing investigators to observe the release of certain proteins from pores in the membranes of mitochondria. These cellular structures contain enzymes that extract energy from food molecules, and the space within the membrane surrounding them holds a variety of proteins that are released during apoptosis.

Results of the study indicate the formation of pores in the mitochondrial membranes is a rapid process that allows a nearly simultaneous rather than a sequential release of many apoptosis proteins, according to Douglas Green, Ph.D., chair of the St. Jude Department of Immunology. Green is senior author of a report on this work that appears in the August 1 issue of Proceedings of the National Academy of Sciences. The process of pore formation, called mitochondrial outer membrane permeabilization (MOMP), allows apoptosis proteins stored underneath the membrane to escape and orchestrate the cell's destruction.

MOMP is controlled by a family of proteins called Bcl-2; some of these support apoptosis and others interrupt the process. The pro- and anti-apoptotic Bcl-2 proteins cooperate to weigh and balance cell signals that promote survival or death, in this way determining the final outcome. During apoptosis, these proteins are either already on the mitochondrial membranes or migrate to the membranes, where they trigger MOMP.

"The slow, continuous release of one of the proteins, apoptosis-inducing factor (AIF), suggests that the pore formed during MOMP remains open for many hours," Green said. "Our finding of nearly simultaneous rather than sequential release of the mitochondrial membrane proteins helps to explain the timing of the movement of these apoptosis proteins following MOMP. The findings also suggest that release of these proteins is not controlled by multiple levels of regulators, but rather occurs as a single event."

The study also highlights the importance of the Bcl-2 family in regulating the formation of pores in the mitochondrial membrane and emphasizes how critical the formation of these pores is to the regulation of apoptosis, Green said.

The team found that after cells were treated with a chemical that triggers apoptosis, it took three to 10 minutes for several proteins, cytochrome c, Smac, Omi and adenylate kinase-2 to escape together immediately following MOMP.

However, the AIF protein escaped from the mitochondrial membrane much more slowly and incompletely, starting with the release of cytochrome c but continuing during the next few hours. The St. Jude researchers concluded that while AIF is known to regulate other cellular processes, the protein itself is not involved in triggering apoptosis. The researchers made the movement of the proteins visible by attaching fluorescent tags to make them glow when observed under a special microscope equipped with a laser that scanned the cells.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>