Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irradiation preserves T-cell responses in bacterial vaccine

26.07.2006
Using gamma radiation to inactivate bacteria for the preparation of vaccines, instead of traditional heat or chemical methods of inactivation, appears to create a vaccine that is more effective than so-called "killed" vaccines against disease, and has the added advantage of a longer storage life than "live" vaccines, according to researchers at the University of California, San Diego (UCSD) School of Medicine.

Their findings, published in the July 26 issue of the journal Immunity, could result in more potent vaccines that are relatively inexpensive to produce, easy to store, and that can be transported without refrigeration.

In experiments with mice, the researchers, led by Eyal Raz, M.D., Professor of Medicine at UCSD's School of Medicine and Joshua Fierer, M.D., UCSD Professor of Medicine and Chief, Infectious Diseases Section, VA San Diego Healthcare System, demonstrated that a vaccine made with irradiated Listeria monocytogenes (LM) bacteria provided much better protection against disease than vaccine made from heat-killed bacteria. Listeria is a food-borne pathogen that can cause severe meningitis and systemic illness in immuno-compromised individuals. It is on a list of agents that could potentially be used in bioterrorist attacks, compiled by the National Institutes of Health.

To test the irradiated LM, mice were vaccinated with either heat-killed or irradiated vaccine, and then given lethal doses of LM bacteria. All of the unvaccinated or heat-killed vaccinated mice died, but 80% of those vaccinated with the irradiated vaccine survived. Protection against infection lasted more than one year after vaccination with irradiated LM.

"Irradiation is a technically simple process that retains structural features of the bacterial pathogen without destroying the natural antigens or the intrinsic adjuvants. Therefore, a strong immune response is induced in the vaccinated host," said Sandip Datta, M.D., assistant professor in UCSD's Department of Medicine and lead author of the study.

The inactivation, or attenuation, of pathogens has been a strategy for vaccine development since Louis Pasteur first attempted vaccinations nearly 150 years ago. Vaccines are designed to stimulate the immune system to protect against micro-organisms such as viruses or bacteria, by introducing a small amount of the virus or bacteria into the body. When this foreign substance invades the body, the immune system activates certain cells to destroy the invader. If the body is re-invaded by the virus or bacteria in the future, the memory cells will be reactivated and respond faster and more powerfully to destroy the virus.

Immunization with attenuated live micro-organisms promotes a strong immune response, but there are safety, storage and transportation issues with these live vaccines. Immunizations using killed bacteria are very safe, but they don't work as well in eliciting a protective immune response.

"Irradiation destroys the DNA, making the bacteria unable to replicate so it cannot establish an infection," said Raz. "But some residual metabolic activity may survive, so the irradiated bacteria can still find its natural target in the host."

The researchers further showed that, unlike heat-killed bacteria, irradiated bacteria retain the ability to activate the immune system through Toll-like receptors. Toll-like receptors detect signature molecules produced by microbes and help hosts recognize they are under attack by bacteria and trigger an inflammatory response against the bacteria. These receptors are the "sentinels" of the body's innate immune system, and they activate the acquired immune system that provides long-term, specific immunity against a pathogen. The ability of Listeria to activate these receptors appears to be intact after gamma-irradiation.

The researchers speculate that heat-killed bacteria may target an entirely different pathway, because the bacterial molecules that engage these surface cell receptors have been destroyed.

Vaccination with a freeze-dried powder formulation of the irradiated bacteria– a product with the potential to be easily and inexpensively stored and transported, then reconstituted just before use – was also shown to protect mice against lethal infection.

These findings could result in the mass production of more affordable, more effective vaccines for resource-poor regions where vaccines are most needed. The technology could also greatly expedite vaccine production and distribution during epidemic outbreaks, bioterrorist attacks or other biothreats, according to the researchers.

"The resulting vaccines using irradiation might be the next-best approach, after those produced using live bacteria. But they would be very safe, simple and inexpensive to produce," said Raz. "This might not be the ideal vaccine, but its practicality is beyond imagination."

The research team is experimenting with several other bacterial strains in addition to LM. They noted that there is a potential that the process may also work to produce a vaccine against Staphylococcus aureus, an important human pathogen that causes drug-resistant staph infections.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>