Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Friend' protein keeps nerve signals in check

26.07.2006
Among the many thousands of proteins in the cell, some are essential players while some are "hangers-on." The neuronal protein syntaxin is essential.

Without it, you die. A more recently discovered protein called tomosyn hangs on, or binds, to syntaxin. Its Japanese discoverers named it tomosyn by combining tomo -- "friend" in Japanese -- with "syn" for syntaxin, to mean "friend of syntaxin."

Now a U.S.-based research team reports this friendly protein appears to play a key role in regulating the synaptic release of neurotransmitter chemicals, which suggests that it may also play a role in learning and memory.

Better understanding of the neurological function of this protein may lead to a better understanding of how synapses get stronger or weaker, and how that, in turn, affects memory formation and loss, says Janet Richmond, associate professor of biological sciences at the University of Illinois at Chicago.

"It's amazing we remember things from as far back as our early childhood with the constant protein turnover going on in our brains," said Richmond. "So understanding how proteins function to control synaptic strength is really important."

Richmond and her colleagues used the soil nematode worm Caenorhabditis elegans to study the function of tomosyn using a recording technique she developed to understand how synaptic proteins affect release of neurotransmitters at the nerve cell junctions. The lab's ability to study synaptic transmission was recently improved with the addition of high pressure freeze electron microscopy and immuno-gold staining, which together provide a clearer picture of where neurotransmitter-containing synaptic vesicles and proteins cluster.

Mutant worms lacking tomosyn were compared to normal worms to determine what effect, if any, the protein had on neuronal transmission. The observed effect is substantial -- the protein helps put a limit on the number of synaptic vesicles that become competent to fuse at synapses, thereby regulating the amount of neurotransmitter released.

"If you remove tomosyn, you get exuberant neurotransmitter release," said Richmond. "This suggests tomosyn is a negative regulator of release. In other words, it dampens down the system, regulating the efficiency and strength of the synapse."

Because the nematode C. elegans uses proteins in its nervous system comparable to those in humans, Richmond suspects that forthcoming experiments involving tomosyn in mammals such as laboratory mice will show similar results.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>