Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Friend' protein keeps nerve signals in check

Among the many thousands of proteins in the cell, some are essential players while some are "hangers-on." The neuronal protein syntaxin is essential.

Without it, you die. A more recently discovered protein called tomosyn hangs on, or binds, to syntaxin. Its Japanese discoverers named it tomosyn by combining tomo -- "friend" in Japanese -- with "syn" for syntaxin, to mean "friend of syntaxin."

Now a U.S.-based research team reports this friendly protein appears to play a key role in regulating the synaptic release of neurotransmitter chemicals, which suggests that it may also play a role in learning and memory.

Better understanding of the neurological function of this protein may lead to a better understanding of how synapses get stronger or weaker, and how that, in turn, affects memory formation and loss, says Janet Richmond, associate professor of biological sciences at the University of Illinois at Chicago.

"It's amazing we remember things from as far back as our early childhood with the constant protein turnover going on in our brains," said Richmond. "So understanding how proteins function to control synaptic strength is really important."

Richmond and her colleagues used the soil nematode worm Caenorhabditis elegans to study the function of tomosyn using a recording technique she developed to understand how synaptic proteins affect release of neurotransmitters at the nerve cell junctions. The lab's ability to study synaptic transmission was recently improved with the addition of high pressure freeze electron microscopy and immuno-gold staining, which together provide a clearer picture of where neurotransmitter-containing synaptic vesicles and proteins cluster.

Mutant worms lacking tomosyn were compared to normal worms to determine what effect, if any, the protein had on neuronal transmission. The observed effect is substantial -- the protein helps put a limit on the number of synaptic vesicles that become competent to fuse at synapses, thereby regulating the amount of neurotransmitter released.

"If you remove tomosyn, you get exuberant neurotransmitter release," said Richmond. "This suggests tomosyn is a negative regulator of release. In other words, it dampens down the system, regulating the efficiency and strength of the synapse."

Because the nematode C. elegans uses proteins in its nervous system comparable to those in humans, Richmond suspects that forthcoming experiments involving tomosyn in mammals such as laboratory mice will show similar results.

Paul Francuch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>