Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Velvet worm brains reveal secret sisterhood with spiders

Velvet worms, living fossils that look like a child's rendition of caterpillars, are more closely related to spiders and scorpions than to butterflies, according to new research.

Known to scientists as onychophorans, velvet worms have been thought to be similar to the ancestors of modern arthropods, the jointed-legged creatures that includes insects.

Fossils that look very much like today's onychophorans can be found in rocks 540 million years old.

"When I looked at their brains, I was shocked because I didn't expect to see what I saw," said Nicholas J. Strausfeld of The University of Arizona in Tucson. "I just felt from their organization that these looked like spider brains, that they had more in common with spider brains than with other arthropod brains."

Strausfeld, a UA Regents' Professor of neurobiology and the director of UA's Center for Insect Science, is a pioneer in using the architectures of cell arrangements within brains to tease out evolutionary relationships among arthropods, the animal phylum that includes all kinds of creepy crawlies, including insects, crustaceans such as lobsters and crabs, and spiders and scorpions.

Onychophora live in groups, defend territories and subdue their prey with sticky goo. The small, sometimes brightly colored, worm-like carnivorous creatures have lobed appendages and live in leaf litter in tropical areas.

"They are very difficult to approach with a pair of forceps because they squirt out this gluey substance that bungs up one's dissection tools. In the wild they use it to immobilize their prey," Strausfeld said of the 2-inch-long critters. "They're really quite extraordinary."

Strausfeld and his colleagues compared the brain architecture of onychophorans with a range of arthropods, including spiders, scorpions, dragonflies, bees, crabs, shrimps and centipedes.

"There are certain ground rules that seem to apply to all brain structures. If we look at the olfactory systems in an onychophoran, the architectural entities that define that system are the same as in an insect or a crustacean or a human being," he said.

"So if we look at these representatives of early brains, we might get insights about how brains evolved in the first place."

Understanding the evolutionary origin of onychophorans could be the key to understanding the evolution of arthropods.

For hundreds of years, biologists have derived evolutionary relationships between groups of animals on the basis of their appearances. In the latter part of the 20th century, new molecular biology techniques allowed biologists to sort out the relationships among animals by analyzing bits of DNA or protein.

Such molecular lineages showed that onychophorans share a common ancestor with all modern arthropods.

Strausfeld had begun a comparative study of the microscopic structure of insect brains in the mid-1990s. He expanded that to include the brains of other arthropods.

The work revealed to him that different types of insects had distinctly different brains: beetles had beetle brains, bees had bee brains, flies had fly brains. Other arthropods, too, had brains that were uniquely their own: spiders, scorpions, centipedes and crabs could all be told apart by their brains.

Onychophoran brains were initially a puzzle. But once he took a hard look he realized "there were structures in the onychophoran brain that looked like those in a spider brain." So he compared onychophoran brains with other animals thought to be related to spiders, such as scorpions and horseshoe crabs.

"In every case these animals had certain traits, certain characters in common that were different from characters shared among the other arthropods, the insects and crustaceans."

Strausfeld and his colleagues cataloged many aspects of the microanatomy of various arthropod brains. The scientists then loaded the information into a computer program designed to sort out lineages based on the degree to which degree traits are shared by a defined group of animals.

Contrary to what most molecular analyses had shown, the computer-generated lineage based on brain microanatomy showed that onychophorans and the spider/scorpion group were more closely related to each other than thought before.

Not much is yet known about onychophorans, at least compared with some other arthropods, Strausfeld said.

"The animal looks simple, but the brain is not simple. Onychophora have pretty complicated behaviors. Colleagues in Australia have discovered that they have fascinating rivalry behaviors, interesting group behaviors and group interactions. Their ecology and genetics are fascinating, and they have really weird sex."

Strausfeld said the new finding suggests that the arrangement of onychophoran brains is an ancient one.

"It's another window into how something very important seems to have appeared very early in life's history," he said. "The very important thing being the brain, a complex brain at that."

Mari N. Jensen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>