Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop novel mouse model to witness immune system attack on chlamydia

25.07.2006
Findings from chlamydia study could hasten development of vaccines for STDs

Using a novel mouse model that allows scientists to study how the immune system's fighter cells respond to invaders in the genital tract during the initial stage of infection, Harvard Medical School (HMS) researchers have found a way to track immunity against Chlamydia trachomatis. The new findings could help hasten the development of vaccines for Chlamydia – the most common cause of bacterial sexually transmitted disease (STD) in the United States – and other STDs. The study appears in the July 24 early edition online of the Proceedings of the National Academy of Sciences.

"Right now Chlamydia is sensitive to treatment with antibiotics, but the problem is that many people have 'silent' infections that remain untreated," said researcher Michael Starnbach, PhD, HMS associate professor of microbiology and molecular genetics. "These undiagnosed infections over time lead to complications like tubal pregnancy and infertility. The goal would be to vaccinate young people to keep them from suffering from undiagnosed infection and the bad outcomes associated with it."

Most pathogens (disease-causing bacteria or viruses) enter a host by penetrating mucosal surfaces such as the lung, intestine, or genito-urinary tract. The prevalence of sexually transmitted diseases has prompted studies to understand how infection is established in the genital tract and how pathogens are cleared from this site. Before Starnbach's study, however, it had not been possible to monitor invader-specific T cell (fighter cell) responses to initial infection in reproductive tissue, despite the recognized importance of T cells in controlling a number of genital pathogens

"Humans and mice have an enormous variety of T cells that are prepared to respond to pathogens – even pathogens to which they have never been exposed," Starnbach said. "Yet prior to infection, the number of T cells specific for any single pathogen is extremely low. The number is so low that it is impossible to track and monitor the activity of these T cells during their first encounter with the microbe."

To circumvent the problem, Starnbach and colleagues in the HMS Department of Microbiology and Molecular Genetics identified one of the Chlamydia proteins recognized by T cells during infection and engineered mice where all the T cells in the mice exclusively respond to this Chlamydia protein. These mice are known as T cell receptor transgenic (TCRtg) mice and have none of the T cell diversity found in a normal mouse. Starnbach and his team harvested T cells from the Chlamydia-specific TCRtg mice, labeled them with a dye, and injected them into normal mice. By boosting the number of Chlamydia-specific T cells in the recipient mice, they were able to identify and monitor them as they responded to infection.

"We found that when the recipient mice were infected with Chlamydia, the labeled T cells became activated specifically in the lymph nodes near the reproductive tract, expanded in number in those lymph nodes, and migrated into the mucosa lining the genital tract," Starnbach said. "We also found that the T cells recruited to the genital mucosa secrete gamma interferon as they respond to Chlamydia infection. Gamma interferon secretion has been described as the key molecule T cells use to rid the body of Chlamydia."

The findings show how T cell responses can be studied in reproductive tissues, which is likely to reveal avenues to the development of vaccines against Chlamydia, and possibly other STDs.

"In this report, we identify one candidate protein, Cta1, and show that T cells specific for Cta1 can reduce Chlamydia infection," Starnbach said. "In designing a vaccine, we would want to make sure the vaccine stimulates T cells with characteristics that cause them to home to the genital tract - the site of infection. We also would want them to respond with the same arsenal of protective factors – such as the secretion of gamma interferon that we show occurs using our TCRtg tools."

The goal of vaccines is to stimulate a response that mimics exposure to a pathogen, without the risks of actual infection. When a vaccine successfully accomplishes this, protection against future infection results.

Judith Montminy | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Cleaning up? Not without helpers
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>