Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers transform stem cells found in human fat into smooth muscle cells

25.07.2006
Impact on tissue engineering for intestine, bladder and vascular systems

Researchers from the David Geffen School of Medicine and the Henry Samueli School of Engineering and Applied Science at UCLA today announced they have transformed adult stem cells taken from human adipose – or fat tissue – into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The study may help lead to the use of fat stem cells for smooth muscle tissue engineering and repair.

Reported in the July 24 online edition of the Proceedings of the National Academy of Sciences, the study is one of the first to show that stem cells derived from adipose tissue can be changed to acquire the physical and biochemical characteristics as well as the functionality of smooth muscle cells.

Smooth muscle cells are found within the human body in the walls of hollow organs like blood vessels, bladder, and intestines and contract and expand to help transport blood, urine, and waste through the body's systems.

"Fat tissue may prove a reliable source of smooth muscle cells that we can use to regenerate and repair damaged organs," said Dr. Larissa V. Rodriguez, principal investigator and assistant professor, Department of Urology, David Geffen School of Medicine at UCLA.

Rodriguez and her team first cultured the adipose-derived stem cells in a growth factor cocktail that encouraged the cells to transform into smooth muscle cells. Researchers observed the genetic expression and development of proteins, which are specific to this type of cell. So it looked like a smooth muscle cell, but would it act like one?

The next step required testing functionality to see if the cells would expand and contract like smooth muscle tissue. Rodriguez turned to associate professor of bioengineering Dr. Benjamin Wu at the UCLA Henry Samueli School of Engineering and Applied Science for help.

Wu's team developed a special device to evaluate the cells' ability to contract by tracking movement of microbeads dispersed in a collagen gel embedded with the cells. Researchers added different pharmacologic agents known to cause contraction or relaxation in smooth muscle.

"We found that the cells did indeed function just like smooth muscle," said Wu. "The new device allowed us to evaluate drug-induced changes in the physical properties of smooth muscle at the cell level – previously we've needed tissue samples to observe this phenomena."

To make sure they could reproduce the smooth muscle cells and to confirm the transformation, Rodriguez and her team cloned one of the primitive stem cells from the adipose tissue and repeated the experiments on a cloned population of cells with similar results.

"We wanted to make sure it wasn't an isolated case or particular conditions in the cell cultures that allowed us to create or select out already existing smooth muscle cells," said Rodriguez, also a member of the UCLA Stem Cell Institute. "We are surprised and pleased with the results and are excited about future applications."

Rodriguez notes the many advantages of using a patient's own fat stem cells for organ re-growth and tissue regeneration, including no need for anti-rejection medications. In patients with a diseased or absent organ, who cannot use their own organ tissue for regeneration, adipose stem cells offer an alternative.

Smooth muscle cells have also been produced from stem cells found in the brain and bone marrow, but acquiring stem cells from adipose tissue is much easier and most patients have adipose tissue readily available, according to Rodriguez.

The next step, she adds, involves identifying and developing the growth factors that will induce transformation of cells more quickly. She is also starting to use smooth muscle cells for tissue engineering in the urinary tract, including the urethra.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Taking screening methods to the next level
17.10.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>