Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers transform stem cells found in human fat into smooth muscle cells

25.07.2006
Impact on tissue engineering for intestine, bladder and vascular systems

Researchers from the David Geffen School of Medicine and the Henry Samueli School of Engineering and Applied Science at UCLA today announced they have transformed adult stem cells taken from human adipose – or fat tissue – into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The study may help lead to the use of fat stem cells for smooth muscle tissue engineering and repair.

Reported in the July 24 online edition of the Proceedings of the National Academy of Sciences, the study is one of the first to show that stem cells derived from adipose tissue can be changed to acquire the physical and biochemical characteristics as well as the functionality of smooth muscle cells.

Smooth muscle cells are found within the human body in the walls of hollow organs like blood vessels, bladder, and intestines and contract and expand to help transport blood, urine, and waste through the body's systems.

"Fat tissue may prove a reliable source of smooth muscle cells that we can use to regenerate and repair damaged organs," said Dr. Larissa V. Rodriguez, principal investigator and assistant professor, Department of Urology, David Geffen School of Medicine at UCLA.

Rodriguez and her team first cultured the adipose-derived stem cells in a growth factor cocktail that encouraged the cells to transform into smooth muscle cells. Researchers observed the genetic expression and development of proteins, which are specific to this type of cell. So it looked like a smooth muscle cell, but would it act like one?

The next step required testing functionality to see if the cells would expand and contract like smooth muscle tissue. Rodriguez turned to associate professor of bioengineering Dr. Benjamin Wu at the UCLA Henry Samueli School of Engineering and Applied Science for help.

Wu's team developed a special device to evaluate the cells' ability to contract by tracking movement of microbeads dispersed in a collagen gel embedded with the cells. Researchers added different pharmacologic agents known to cause contraction or relaxation in smooth muscle.

"We found that the cells did indeed function just like smooth muscle," said Wu. "The new device allowed us to evaluate drug-induced changes in the physical properties of smooth muscle at the cell level – previously we've needed tissue samples to observe this phenomena."

To make sure they could reproduce the smooth muscle cells and to confirm the transformation, Rodriguez and her team cloned one of the primitive stem cells from the adipose tissue and repeated the experiments on a cloned population of cells with similar results.

"We wanted to make sure it wasn't an isolated case or particular conditions in the cell cultures that allowed us to create or select out already existing smooth muscle cells," said Rodriguez, also a member of the UCLA Stem Cell Institute. "We are surprised and pleased with the results and are excited about future applications."

Rodriguez notes the many advantages of using a patient's own fat stem cells for organ re-growth and tissue regeneration, including no need for anti-rejection medications. In patients with a diseased or absent organ, who cannot use their own organ tissue for regeneration, adipose stem cells offer an alternative.

Smooth muscle cells have also been produced from stem cells found in the brain and bone marrow, but acquiring stem cells from adipose tissue is much easier and most patients have adipose tissue readily available, according to Rodriguez.

The next step, she adds, involves identifying and developing the growth factors that will induce transformation of cells more quickly. She is also starting to use smooth muscle cells for tissue engineering in the urinary tract, including the urethra.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>