Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find gene mutation that leads to 'broken hearts'

24.07.2006
Researchers at UT Southwestern Medical Center have identified a group of fruit fly gene mutations responsible for "broken hearts" in the embryonic stages of development, a discovery that could help identify genes that cause human heart defects.

"We engineered a fruit fly so that the heart would glow in the dark and found a new type of malformation, completely unexpectedly," said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study appearing in today's issue of Science. "We coined the term 'brokenhearted' for this defect because two kinds of cardiac cells separated, thus causing the heart to fall apart, with a loss of heart function and embryonic death."

The heart is the first organ to form and function in the embryo. Abnormalities in the complex process of heart formation result in congenital heart defects, the most common birth defects in humans afflicting about 1 percent of newborns. Because the events of heart formation are very similar throughout the animal world, the fruit fly is a useful model to study the causes of heart defects in mammals, Dr. Olson said.

The researchers found that mutations in genes encoding enzymes in a pathway for synthesis of a small lipid caused this broken heart defect in fruit flies. One of these enzymes, HMG CoA reductase, also plays a key role in the synthesis of cholesterol in humans. In fruit flies, these enzymes are required to generate a small lipid to modify a signaling protein, which is required for heart formation. The study suggests the involvement of the same biochemical pathway in human heart formation and congenital heart disease.

"We were surprised to discover that a group of enzymes involved in lipid synthesis plays a previously unrecognized role in assembling the heart. The same mechanism is likely to be involved in human-heart development," said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.

The findings further our understanding of the identity of genes that can cause heart defects and also serve as a step in developing genetic screening for such defects, Dr. Olson said.

"It was very interesting because so little is known about how the heart forms and we did not anticipate that the same enzymes involved in cholesterol and lipid synthesis might play an important role in the development of an organ," he said.

One of the goals of this research is to define the genetic blueprint for how the heart forms. In order to do that, the UT Southwestern scientists engineered fruit flies whose hearts glow by expressing a gene coding for green fluorescent protein specifically in the heart. "This fly with a glowing heart enables us to visualize the details of heart development with high resolution in living animals and to detect cardiac defects that have never been described before", said Dr. Zhe Han, research instructor and co-first / co-senior author of this study.

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>