Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a genetic cause for atrial fibrillation

21.07.2006
Mayo Clinic investigators have discovered a gene mutation causing chaotic electrical activation of the heart muscle and atrial fibrillation (AF), a common heart-rhythm disturbance affecting millions of Americans. Atrial fibrillation can lead to heart failure and stroke.

"The discovery underscores the significance of heredity in susceptibility to atrial fibrillation," explains Timothy M. Olson, M.D., director of the Cardiovascular Genetics Laboratory at Mayo Clinic.

"Identification of a new molecular basis for atrial fibrillation provides a critical step toward individualized diagnosis and treatment of arrhythmia," adds Andre Terzic, M.D., Ph.D., director of Mayo Clinic's Marriott Heart Disease Research Program.

The Mayo Clinic discovery is published in the July 15 issue of the journal Human Molecular Genetics (http://hmg.oxfordjournals.org/cgi/

content/full/15/14/2185).

Significance of the Mayo Clinic Research

The Mayo Clinic study provides new insight into a previously unrecognized mechanism for electrical instability in the human heart. The Mayo multidisciplinary team is the first to identify a specific genetic mutation of the ion channel gene KCNA5 that leads to a disease-causing condition called a channelopathy.

A channelopathy is an abnormality of specific miniature transportation tubes in cell membranes. The job of these tubes -- or channels -- is to selectively allow certain charged particles in and out of the cell, and in this way, pass electrical currents in and out of the cell to regulate each heartbeat. The KCNA5 mutation causes loss of function of an atrial-specific potassium ion channel, disrupting electrical synchronization. This leads to susceptibility for atrial fibrillation.

About Atrial Fibrillation

Atrial fibrillation is the most common arrhythmia -- or irregular heartbeat -- worldwide. In the United States alone, more than 2 million Americans suffer from atrial fibrillation, constituting a major public health epidemic. During a person's lifetime, there is a 25 percent risk this rhythm disorder will develop, and patients with atrial fibrillation have a fivefold increased risk for stroke. Atrial fibrillation has been increasingly recognized as an inherited disease.

About the Study

The Mayo investigation used comprehensive genetic analysis to identify a mutation in the DNA of a sibling pair with atrial fibrillation in the absence of known risk factors for the disease. This genetic anomaly was not present in the DNA of individuals without atrial fibrillation.

The atrial fibrillation mutation occurred in the KCNA5 gene, which produces a key heart protein known as Kv1.5. Loss of Kv1.5 function, in turn, made the atria -- the upper pumping chambers of the heart -- more vulnerable to stress-induced chaotic rhythms, and atrial fibrillation.

To validate the finding, the researchers reproduced the disease features at the molecular, cellular and organism levels and corrected the mutation, restoring the defective ionic current.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu
http://hmg.oxfordjournals.org/cgi/content/full/15/14/2185

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>