Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reading the words halitosis or jasmine activates the olfactory areas of the brain

18.07.2006
There are words whose power to evoke sensations has become proverbial. Just hearing them brings to mind the image, sound or feeling of that little fragment of reality they refer to. But what is the mechanism that accounts for this connection between a word and the mental imagery it conjures up?

A joint research project carried out by scientists from the Universitat Jaume I and the Cognition and Brain Sciences unit at the Medical Research Council in the UK has gone a step further towards finding an explanation for this phenomenon. With the help of magnetic resonance imaging, the team observed that reading words with strong connotations to odours not only triggers activity in the brain areas related to language, but also those linked to the sense of smell.

Garlic, stink, incense, urine, lemon, armpit, lavender… 23 people read these and another 53 words related to smells (either pleasant or unpleasant) that were jumbled up with another 60 words with no aromatic association. At the same time, images of their brain activity were registered using magnetic resonance. Findings showed that reading the words associated with a smell triggered activation of the area in the brain that processes olfactory information. More specifically, the areas involved were the primary olfactory cortex and the orbitofrontal cortex. In contrast, when the volunteers read words with no aromatic connotations, these regions of the brain remained inactive.

From these results, the researchers believe that when we acquire knowledge or experience about something that has a word to describe it, the brain connects the two pieces of information, that is, linguistic and sensory, in order to create the semantic meaning. “Given the fact that words are normally used with the objects and actions they refer to, the cortical neurons that process the information related with the words and with the objects are activated at the same time. In this way data about the referent and about the word are brought together through the cortical networks or neuronal webs”, the researchers explain in a paper that is soon to be published in the journal Neuroimage.

This concept was already put forward in the mid-20th century by Donald Hebb, one of the fathers of neuropsychology, in his well-known principle of correlation-based learning. According to this principle, any two cells or two systems of cells that are repeatedly activated at the same time will tend to become associated so that the activity taking place in one facilitates the activity of the other. Thus, when the sensory information produced by the smell of cinnamon is stored in the brain and we label it, cinnamon, a link is set up between the groups of neurons that store the two types of data. That is why, on smelling a stick of cinnamon its name suddenly comes to mind and, conversely, when we read the name we know what smell it refers to.

“The fact that primary olfactory areas are activated by words with olfactory semantic associations supports the idea that sensory information linked to the referent of a word is important for its neuronal representation”, says the research team led by Julio González, César Ávila and Alfonso Barros, who are all scientists working in the Department of Psychology at the Universitat Jaume I.

Other previous studies have obtained similar evidence that lends support to this theoretical perspective, especially for words expressing actions that are semantically related with different parts of the body. Thus, previous research has shown that reading, for example, a verb related to the legs, such as kick, activates both the classical language areas and the motor areas involved in moving the legs and feet.

According to the authors of the study, in which the radiology company Eresa also collaborated, all these data suggest that the meaning of words is not confined solely to areas of the brain concerned with language, but rather “it seems that semantic representations are distributed systematically throughout the entire cerebral cortex”.

The work carried out by the Universitat Jaume I and the Medical Research Council in Cambridge goes a long way towards furthering our understanding of the principles governing the organisation of the human brain.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>