Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists show protein key to bladder cancer spread, potential drug target

17.07.2006
By demonstrating that a protein – a growth factor called proepithelin – plays a crucial role in the spread of bladder cancer, scientists at Jefferson Medical College and Jefferson's Kimmel Cancer Center may have identified a potential target for drugs.

"The fact that proepithelin doesn't appear to strongly promote cell proliferation, but instead promotes migration and invasion – two crucial steps leading to metastasis – suggests that it could be critical for the passage of a cancer from a noninvasive to an invasive phenotype," says Andrea Morrione, Ph.D., research assistant professor of urology at Jefferson Medical College of Thomas Jefferson University and Jefferson's Kimmel Cancer Center in Philadelphia.

In some cases, he notes, proepithelin might be used as a marker for bladder cancer. He and his colleagues report their findings July 15, 2006 in the journal Cancer Research.

Proepithelin is found in higher-than-normal levels in breast, ovarian and renal cancers, in addition to deadly brain cancers known as glioblastomas. It plays important roles in development, cell movement and tumor formation.

The American Cancer Society estimates that 61,420 new cases of bladder cancer will be found in the United States during 2006, making it the fifth most common cancer in this country. About 13,060 people will die of the disease. While it is treatable, especially if caught early, the cancer often returns and spreads to other areas of the body, and little is known about the molecular mechanisms behind its formation.

Dr. Morrione, along with a team including Renato Iozzo, M.D., professor of pathology, anatomy and cell biology, Raffaele Baffa, M.D., associate professor of urology, and Leonard Gomella, M.D., professor and chair of urology, all at Jefferson Medical College, knew that proepithelin was important in cell migration and wanted to investigate its potential role in bladder tumor formation.

In the study, using 5637 bladder cancer cells (cells from a type of bladder cancer), the group showed that proepithelin promoted migration of the bladder cancer cells and stimulated wound closure and invasion. He notes that looking at wound healing – "the ability of the cells to migrate and close gaps" – was another technique used to confirm proepithelin's role.

When they looked more closely at the molecular pathways involved in bladder cancer formation, they discovered that proepithelin turned on a common pathway called MAP kinase. Dr. Morrione believes that proepithelin will be found to have similar roles in other cancers.

He notes that one next step in the work is to verify whether or not proepithelin could be a marker in bladder tumors to use to predict metastasis. Bladder tumors are sometimes difficult to treat because of recurrence, he says. "There is a need for a non-invasive test for early detection of bladder tumors."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>