Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV infection requires B cells with special protein

14.07.2006
Study in PLoS Pathogens identifies new pathway that may aid in treating, preventing HIV

HIV infection of T cells requires activation of a molecule on the surface of B cells, a finding that reveals yet another pathway the virus uses in its insidious attack on the immune system, report University of Pittsburgh Graduate School of Public Health (GSPH) and School of Medicine researchers in PLoS Pathogens, an open-access journal published by the Public Library of Science. While preliminary, the research suggests a need for developing a class of antiviral drugs targeted against this molecule and offers an avenue that may prove critical for the prevention of HIV.

Nearly all approved HIV drug regimens and most of those being tested in clinical trials focus on T cells, where HIV replicates and thrives. HIV hijacks T cells by binding to a cell membrane molecule called CD4 and to either or both of two other receptors, from which the two strains of HIV, X4 and C5, take their names. Once anchored on the membrane, it's able to slither inside and take command of the cell. The new research identifies an important first step in a new pathway involving B cells that express a protein called DC-SIGN. While these cells themselves do not become infected, they play a pivotal role as an accomplice in HIV's takeover of T cells.

"We have new insight into how the virus does its damage. The pathway is surprisingly simple, yet it has important implications for future studies and drug development efforts that focus on reservoirs of HIV in cells other than T cells," said Charles R. Rinaldo, Jr., Ph.D., professor and chairman of the department of infectious diseases and microbiology at Pitt's GSPH and the study's senior author.

The researchers report evidence of DC-SIGN in subsets of B cells from both healthy subjects and HIV infected individuals. Laboratory studies of these cells indicate DC-SIGN is a point of entry for HIV and necessary for T cell infection.

B cells were isolated from blood samples obtained in 33 healthy subjects and 20 adult patients with HIV from the Multicenter AIDS Cohort Study (MACS), 10 of whom had suppressed virus due to antiretroviral therapy (ART) and 10 who had never undergone ART. Researchers found about 8 percent of these cells expressed DC-SIGN. The researchers also confirmed their presence in tissue by examining samples from five non-HIV tonsillectomy patients. In tonsils, a lymphoid organ where both T cells and B cells congregate and engage in cross talk, 26 percent of the B cells expressed DC-SIGN.

In one set of studies involving cells from the healthy subjects, the team activated DC-SIGN using two molecules that T cells typically engage in their communication with B cells. Once activated, the DC-SIGN B cells were placed in a culture with T cells and a small amount of virus. Within 24 hours, HIV had invaded the T cells while sparing the B cells. When researchers repeated the experiment without B cells, the HIV had little effect on the T cells alone. Pretreating the B cells with a molecule that blocks DC-SIGN activation before culturing them with both T cells and HIV was a deterrent against T cell infection as well, further proof that to invade T cells, HIV requires DC-SIGN expressed on B cells.

DC-SIGN was first identified as a dendritic cell-specific binding site for HIV, but with this study, Dr. Rinaldo and colleagues prove that B cells expressing DC-SIGN also are used by HIV to facilitate infection of T cells.

"As has been observed in DC-SIGN dendritic cells, we suspect the B cells internalize the virus and that the DC-SIGN serves as sort of a bridge HIV uses to reach the surface of T cells," noted Giovanna Rappocciolo, Ph.D., associate professor of infectious diseases and microbiology at GSPH and the study's first author.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>