Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota researchers take new look at cellular suicide

10.07.2006
Like a bodyguard turned traitor, a protein whose regular job is to help repair severed DNA molecules will, in some cases, join forces with another protein to do the opposite and chop the DNA to bits, according to new research at the University of Minnesota.

The chopping up of a cell's DNA occurs in response to damage, for example, from ultraviolet light, and appears to be a means of killing the cell before it can become dysfunctional or cancerous. The proteins are produced by two cellular processes, both of which must be set in motion before the proteins can gang up on the DNA molecule and seal the cell's fate. The researchers describe their discovery in the July 7 issue of Archives of Internal Medicine.

The self-killing of cells is termed apoptosis, and its purposes include not only culling damaged cells but shaping an embryo by getting rid of webbing tissue between fingers and toes. By contributing to the understanding of how apoptosis works, the researchers, led by Zigang Dong of the university's Hormel Institute in Austin, Minn., hope someday to see the process used to kill cancer cells or other unwanted tissue.

The "bodyguard" protein belongs to a class of proteins called histones, which act like spools for the "thread" of DNA molecules. Rather than float in the cell nucleus like an overlong piece of spaghetti, the DNA molecule loops around regularly spaced histones, which not only support the DNA but play various roles in managing its functions.

"In the past, people thought histones were just for packaging DNA," said Dong, who studied a histone named H2AX. "People believe H2AX plays a role in DNA repair. But we find that if DNA can't be repaired, the cell undergoes apoptosis. The histone H2AX is probably important for both apoptosis and DNA repair."

Dong and his colleagues were led to the discovery by their previous work on the biochemistry of skin cancer. They had previously found that various forms of an enzyme known as JNK played a role in the development of the cancer. Working with cells from the skin of mice, they have now discovered that after they expose cells to damaging amounts of ultraviolet light, a form of JNK initiates both of the cellular processes that culminate in DNA destruction.

In one process, JNK starts a chain reaction that leads to the activation of an enzyme that chops up DNA. In the other process, JNK activates the histone H2AX. The activated enzyme and the activated histone work together to make mincemeat of the DNA. Dong and his colleagues are the first to show that activation of H2AX is necessary for apoptosis to occur by means of the DNA-chopping enzyme. The work was supported by the Hormel Foundation and the National Institutes of Health.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>