Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineered tissue implants regenerate damaged knee cartilage

06.07.2006
Tissue Engineering

Knee cartilage injuries can be effectively repaired by tissue engineering and osteoarthritis does not stop the regeneration process concludes research led by scientists at the University of Bristol.

The study, "Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees", published in the July 2006 (Volume 12, Number 7) issue of Tissue Engineering, demonstrates that engineered cartilage tissue can grow and mature when implanted into patients with a knee injury. The novel tissue engineering approach can lead to cartilage regeneration even in knees affected by osteoarthritis.

The tissue engineering method used in this study involved isolating cells from healthy cartilage removed during surgery from 23 patients with an average age of 36 years. After growing the cells in culture for 14 days, the researchers seeded them onto scaffolds made of esterified hyaluronic acid, grew them for another 14 days on the scaffolds, and then implanted them into the injured knees of the study patients.

Cartilage regeneration was seen in ten of 23 patients, including in some patients with pre-existing early osteoarthritis of the knee secondary to traumatic injury. Maturation of the implanted, tissue-engineered cartilage was evident as early as 11 months after implantation.

Antony Hollander, ARC Professor of Rheumatology & Tissue Engineering at Bristol University who led the study, said: "This is the first time we have shown that tissue-engineered cartilage implanted into knees can mature within 12 months after implantation, even in joints showing signs of osteoarthritis.

"Left untreated, many cartilage injuries will progress to osteoarthritis and the need for eventual replacement of the whole joint. Future investigations need to be carried out but this approach will allow us to improve further the outcome of cartilage repair."

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk
http://www.liebertpub.com/ten

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>