Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New sleep gene discovery wakes up scientists

Proteins that regulate sleep and biological timing in the body work much differently than previously thought, meaning drug makers must change their approach to making drugs for sleep disorders and depression and other timing-related illnesses.

The surprise finding is an about-face from previous research, said Daniel Forger, assistant professor of math at the University of Michigan. Forger and his collaborators from the University of Utah's Huntsman Cancer Institute have written a paper on the topic, which will appear on in the July 11 issue of the Proceedings of the National Academy of Science. It will appear the week of July 3 on line, at

Scientists studied two proteins (one called CKIe and another called PERIOD) that help regulate timing in the body, and looked at how those proteins function in cells, said Forger. One of the proteins causes the other protein to degrade, and the body knows what time it is by how much or how little PERIOD protein is present at any one time in the body. The body's clock is called a circadian rhythm.

Drug makers spend billions to develop drugs to help people with sleep disorders, and other disorders impacted by our biological clocks. Drugs to restore a healthy circadian rhythm by manipulating the levels of PERIOD proteins are currently under development.

One such sleep disorder is called Familial Advanced Sleep Phase Syndrome and this is caused by a gene mutation, Forger said. Patients suffering from the disease routinely wake very early, say at 4 a.m. and must go to bed early, at say 7 p.m. said Forger.

If put in a cave with no light, these people should have a shortened day, Forger said. This means that on our time, they would wake the first day at say, 6 a.m. then at 4 a.m. then at 2 a.m. on subsequent days.

"When they have light and dark cycles in the normal world, they pretty much have to live in a 24-hour day," Forger said. "They were able to adjust but the price they have to pay is their body wakes up early, and they have to go to bed earlier than we do."

"The theory was that the mutation caused (more of the PERIOD protein) so you get a short day so you want to get up very early in the morning," Forger said. But, during testing they found the opposite is true: the mutation actually caused the PERIOD to degrade more quickly so that less is present in the body.

The finding wasn't a complete surprise to Forger, who develops math models of the circadian rhythms. Forger's computer models always said that the opposite of the prevailing thinking should be true---that the PERIOD protein should degrade more quickly when the mutation is present.

"I had this prediction for a year or two," Forger said. "Basically, people said this is ridiculous, you're a mathematician, what do you know…"

Then he met David Virshup, M.D., while giving an invited talk at the University of Utah. Virshup's previous research was on the gene involved in circadian rhythms and its role in cancer development. Their experiments had also suggested that genetic mutation caused the protein to degrade more quickly. Virshup suggested they test Forger's simulation.

The researchers took cell cultures and observed that for those with the mutated gene, the protein only took a couple hours to degrade. For the normal gene, it took 8-10 hours.

Next, Virshup said, his team will begin testing ways to regulate the circadian rhythm in mice, a necessary step before new drugs can be developed.

Laura Bailey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>