Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat halts pain inside the body

05.07.2006
The old wives’ tale that heat relieves abdominal pain, such as colic or menstrual pain, has been scientifically proven by a UCL (University College London) scientist, who will present the findings today at the Physiological Society’s annual conference hosted by UCL.

Dr Brian King, of the UCL Department of Physiology, led the research that found the molecular basis for the long-standing theory that heat, such as that from a hot-water bottle applied to the skin, provides relief from internal pains, such as stomach aches, for up to an hour.

Dr King said: “The pain of colic, cystitis and period pain is caused by a temporary reduction in blood flow to or over-distension of hollow organs such as the bowel or uterus, causing local tissue damage and activating pain receptors.

“The heat doesn’t just provide comfort and have a placebo effect – it actually deactivates the pain at a molecular level in much the same way as pharmaceutical painkillers work. We have discovered how this molecular process works.”

If heat over 40 degrees Celsius is applied to the skin near to where internal pain is felt, it switches on heat receptors located at the site of injury. These heat receptors in turn block the effect of chemical messengers that cause pain to be detected by the body.

The team found that the heat receptor, known as TRPV1, can block P2X3 pain receptors. These pain receptors are activated by ATP, the body’s source of energy, when it is released from damaged and dying cells. By blocking the pain receptors, TRPV1 is able to stop the pain being sensed by the body.

Dr King added: “The problem with heat is that it can only provide temporary relief. The focus of future research will continue to be the discovery and development of pain relief drugs that will block P2X3 pain receptors. Our research adds to a body of work showing that P2X3 receptors are key to the development of drugs that will alleviate debilitating internal pain.”

Scientists made this discovery using genetic engineering to make both heat and pain receptor proteins in the same host cell and then watching the molecular interactions between the TRPV1 protein and the P2X3 protein, switched on by capsaicin, the active ingredient in chilli, and ATP, respectively.

Alexandra Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>