Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potato blight pathogenicity explained by genome plasticity

04.07.2006
'Adjustable' genes are essential for inducing infection in potato plants

A team of researchers from Wageningen University report in this month's issue of Genome Research that they have identified a unique genetic fingerprint in the pathogen responsible for potato blight. Some strains of the pathogen possess multiple copies of a specific gene, while other strains possess only a single copy. Certain potato plants do not recognize strains of the pathogen with only the single gene copy, making them susceptible to infection. This is the first report of gene amplification in a non-bacterial organism that is associated with pathogenicity, and it provides insight into how plant pathogens tailor their genomes to adapt to their environments.

The potato late blight pathogen, known to scientists as Phytophthora infestans, is a fungus-like organism that was responsible for the Irish Potato Famine of the 1840s and continues to cause devastating agricultural losses worldwide today. Infected plants are characterized by dark lesions on the stems, leaves, and tubers; damage to the tuber surface allows other fungi and bacteria to enter and destroy the core, often resulting in a foul odor. P. infestans is related to approximately 65 other pathogens that cause similar damage to commercial crops as well as natural vegetation.

In the potato-Phytophthora system, the host-pathogen response has evolved in a highly specific way: resistance (R) genes from wild species, which are introduced into cultivated potato by breeding, are matched by avirulence (Avr) genes in Phytophthora. While many such gene matches are predicted, only a few have been confirmed by molecular and functional studies. Avr genes are thought to undergo rapid changes to evade detection by plants that possess R genes, which means that many strains of Phytophthora and potato are likely to be evolving at the present time.

"P. infestans is notorious for its ability to change in response to R genes," says Dr. Francine Govers, the principal investigator on the project. "These changes are probably facilitated by its underlying genomic plasticity. Field isolates of P. infestans are known to be genetically highly variable."

Govers, along with colleagues Rays Jiang, Rob Weide, and Peter van de Vondervoort, set out to identify the genetic basis for the virulence of specific Dutch P. infestans strains. The outcome of their efforts was the identification of single gene, called pi3.4, that was present as a single, full-length copy in both the virulent and avirulent strains. They also identified multiple copies of pi3.4 only in the avirulent strain – but, interestingly, these copies represented only part of the pi3.4 gene.

The authors speculate that the partial gene copies could function as a source of modules for generating new genes. These new genes could be produced by unequal crossing-over, or exchange of genetic material, during development. The partial copies may also serve as alternative protein-coding units, which allow the pathogen to produce a diverse array of proteins and, consequently, to adapt to its environment.

"Surprisingly, the pi3.4 gene does not code for an effector – a small protein that elicits a defense response in plants," adds Govers. "Effectors are quite common in fungal and bacterial plant pathogens, including Phytophthora. But in our case, the gene appears to produce a large regulatory protein that exerts its effect by regulating the expression of other genes, possibly effector genes."

While the exact mechanism by which these partial gene copies function as a source of modular diversity remains to be resolved, this study highlights the importance of genome plasticity in evolution. Understanding genome plasticity as a mechanism for environmental response and ecological adaptation in pathogenic organisms has important implications. "The efforts of plant breeders to obtain resistant varieties by introducing R genes, either by classical breeding or by genetic modification, may be a waste of time and resources when the genome dynamics of the pathogen population is not understood," says Govers. "Monitoring field populations of plant pathogens at the genome level will be instrumental for predicting the durability of R genes in crop plants."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>