Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to stop SARS viruses from reproducing

29.06.2006
In times of the “bird flu” SARS seems to be no threat anymore. This notion is deceptive. Experts assume that viruses causing the severe acute respiratory syndrome SARS, or other related corona viruses, could re-emerge at any time and might pose a global public-health threat.

From November 2002 to June 2003, 8,500 patients were infected with an at that time unknown pathogen originating in southern China; 800 humans died. Then, the epidemic was controlled and it’s cause detected. The pathogen was a novel corona virus. Such viruses are extremely alterable.


The bright spot surrounded by a corona looks harmless, but it is a deadly pathogen: A corona virus causing SARS. The virus was first identified by the Bernhard Nocht Institute for Tropical Medicine in Hamburg. Picture by Bernhard Nocht Institute for Tropical Medicine.

Now, researchers of the “Leibniz-Institut für Molekulare Pharmakologie” (FMP) in Berlin have synthesized substances that target a vital enzyme of the SARS virus, namely it’s main protease. “We were systematically looking for molecules to prevent the corona virus from reproducing itself”, says Prof. Jörg Rademann. He heads the group “Medical Chemistry” at the FMP. Rademann adds: “We hope that our research can help to produce suitable drugs against such viruses in a short time, especially in the case of a new epidemic.”

The main protease proved to be a good starting-point for the researchers: The group of Prof. Rolf Hilgenfeld at the University of Lübeck provided the protein and solved its structure. The viral enzyme cuts long protein molecules manufactured by the virus in the host cell into small pieces. The main protease is essential for the reproduction of all corona viruses and it has an almost identical structure in all of these pathogens. Thus, once a substance that attacks the main protease is found, scientists would have a wide range of possibilities to fight different corona viruses.

Rademann and his team, together with colleagues, have synthesized for the first time molecules that attach themselves to the main protease without being chemically reactive. Most importantly, this process is reversible, thus minimizing side-effects of potential drugs. The researchers presented a collection of substances that resemble the natural substrate of the main protease. Even if it is still a long way from such a collection to suitable drugs, the newly synthesized peptide aldehydes mark an important step towards a therapy for SARS. The next goal is to identify the most effective peptide aldehydes out of the collection and then to further optimize the substance. “If we are successful, the next outbreak of SARS will pose a much smaller threat to public-health and we will not be helpless”, says Rademann.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>