Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fruit flies aboard space shuttle subjects of UCF, UC Davis study on immunity and space

Researchers hope to gain insights into how long space trips, such as missions to Mars, would affect astronauts' health

Fruit flies aboard the Space Shuttle Discovery will help University of Central Florida and University of California, Davis, biologists learn more about how prolonged stays in space could affect human immune systems.

The flies will need little care during their 12-day stay aboard the shuttle, which is scheduled to launch Saturday, July 1, from Kennedy Space Center. Astronauts will only have to replace their food tray once.

When the flies return to earth, Laurence "Laurie" von Kalm, an associate professor of biology at UCF, will work with Deborah Kimbrell, a UC Davis associate research geneticist, to evaluate their responses to bacteria and fungi and compare them to the responses of flies that did not go into space.

"The primary question being asked is whether the immune system is compromised from prolonged space travel," von Kalm said. "Are they more susceptible to infection than the flies that don't travel into space?"

NASA provided Kimbrell with a grant to fund the research, and Kennedy Space Center is providing a lab where von Kalm, Kimbrell and their colleagues will test the flies for two weeks after the shuttle returns. Scientists from NASA's Ames Research Center, Rice University and the University of Nevada, Las Vegas, are also part of the research team.

NASA's goal is to find out how extended stays in space, such as a trip to Mars, could affect the health of astronauts, von Kalm said.

Fruit flies can help NASA move closer to that goal because certain aspects of the genetic makeup of their immune systems and humans' are similar. Also, a 12-day stay in space qualifies as prolonged for fruit flies because they only live for about four to six weeks.

Kimbrell sought von Kalm's help because of his experience working with fruit flies and because of UCF's proximity to Cape Canaveral. Four of von Kalm's graduate students and a senior research assistant will join him at Cape Canaveral to conduct the post-landing tests.

Von Kalm, who began teaching at UCF in 1997, focuses most of his research on the effects of steroid hormones on the development of fruit flies. Because of their genetic similarities to humans, the flies provide a good model for understanding how steroids can affect the development of humans, he said.

The flies on the shuttle will travel in 10 small containers, each of which is about the size of a computer zip disk. Two separate groups of flies will be kept in a Kennedy Space Center research lab during the mission.

To help researchers rule out variables aside from gravity that could affect the flies, one group will be subjected to the same temperatures and vibrations experienced during space flight. The other group will be kept in normal room conditions.

The shuttle also will carry a small amount of a fungus known as "Beauveria bassiana," an approved organic pesticide that is not harmful to humans. Kimbrell, von Kalm and their colleagues will examine whether the reduced gravity makes the fungus more potent.

Flies will be exposed to fungi from the shuttle and fungi kept in a lab, a move that will help determine if various effects are results of the flies' weakened immune systems or the fungi becoming more virulent in space.

The future direction of Kimbrell's and von Kalm's research will depend on the results of the upcoming experiment and the level of cutbacks in funding for NASA's life sciences research.

The shuttle launch will be the second NASA mission in the last two months with ties to UCF research.

UCF optics professor James Harvey and two graduate students designed the Solar X-ray Imager on board the GOES-N satellite that was launched in May. The new X-ray telescope will help to improve the monitoring of weather activity such as hurricanes. It also will aid in monitoring and predicting space weather, which can disrupt cell phones, cause blackouts, interrupt airline traffic and damage or destroy instruments on multimillion-dollar satellites.

Chad Binette | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>