Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse, frog and bird put Snail and Slug to different uses

28.06.2006
With names like Snail and Slug, you might expect genes belonging to the category known as the Snail family to be associated with some steady, slow-moving biological progression. Instead, these genes help direct the dynamic, fast-paced race of early embryonic development, when cells are dividing, migrating around the body and differentiating into the millions, even trillions, of specialized cells that constitute a mature organism.

Snail family genes are present in vertebrates and have counterparts in invertebrates such as the fruit fly Drosophila. To biologists, this means that these genes are "well conserved across species"--in other words, diverse species retained them as they evolved. So it's reasonable to expect that their function would be the same among all vertebrates: mice as well as frogs and birds, for instance.

In a paper just released in the Proceedings of the National Academy of Sciences, two Jackson Laboratory scientists have demonstrated both a confirmation of the consistent role of Snail genes in vertebrates, and a surprising exception.

Dr. Thomas Gridley and Dr. Steven Murray showed that Snail family genes operate consistently in mice and birds in controlling the acquisition of differences between the two sides of the body. While the body plan of all vertebrates is overtly symmetric on both body sides, most internal organs exhibit an asymmetric distribution. For example, in mammals the heart is located on the left side of the body while the liver is on the right. Gridley and Murray found that, similarly to what has been described for birds, the Snail gene controls acquisition of these asymmetric body differences in mice.

On the other hand, Gridley and Murray found that Snail family gene function relating to neural crest cells is different in mice. Neural crest cells are developmental cells that form at the border of the embryonic neural plate (a structure that later develops into the spinal cord and brain) during early embryo formation. In normal vertebrate development, these cells "delaminate," or separate, from the neural plate, migrate throughout the embryo, and differentiate at their final destinations into a wide variety of cell types.

In frog and bird embryos, Snail family genes are required for neural crest cell formation and delamination. Gridley and Murray discovered that mouse embryos lacking both Snail and Slug had severe defects, yet still formed neural crest cells that were able to delaminate and migrate.

"This work demonstrates that species-specific differences in the regulation of neural crest formation and migration are more profound than previously appreciated," said Gridley. "These results shed surprising new light on the roles of Snail family genes during early development in mammals, and the different roles these genes can play during evolution of individual vertebrate species."

Mark Wanner | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>