Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse, frog and bird put Snail and Slug to different uses

28.06.2006
With names like Snail and Slug, you might expect genes belonging to the category known as the Snail family to be associated with some steady, slow-moving biological progression. Instead, these genes help direct the dynamic, fast-paced race of early embryonic development, when cells are dividing, migrating around the body and differentiating into the millions, even trillions, of specialized cells that constitute a mature organism.

Snail family genes are present in vertebrates and have counterparts in invertebrates such as the fruit fly Drosophila. To biologists, this means that these genes are "well conserved across species"--in other words, diverse species retained them as they evolved. So it's reasonable to expect that their function would be the same among all vertebrates: mice as well as frogs and birds, for instance.

In a paper just released in the Proceedings of the National Academy of Sciences, two Jackson Laboratory scientists have demonstrated both a confirmation of the consistent role of Snail genes in vertebrates, and a surprising exception.

Dr. Thomas Gridley and Dr. Steven Murray showed that Snail family genes operate consistently in mice and birds in controlling the acquisition of differences between the two sides of the body. While the body plan of all vertebrates is overtly symmetric on both body sides, most internal organs exhibit an asymmetric distribution. For example, in mammals the heart is located on the left side of the body while the liver is on the right. Gridley and Murray found that, similarly to what has been described for birds, the Snail gene controls acquisition of these asymmetric body differences in mice.

On the other hand, Gridley and Murray found that Snail family gene function relating to neural crest cells is different in mice. Neural crest cells are developmental cells that form at the border of the embryonic neural plate (a structure that later develops into the spinal cord and brain) during early embryo formation. In normal vertebrate development, these cells "delaminate," or separate, from the neural plate, migrate throughout the embryo, and differentiate at their final destinations into a wide variety of cell types.

In frog and bird embryos, Snail family genes are required for neural crest cell formation and delamination. Gridley and Murray discovered that mouse embryos lacking both Snail and Slug had severe defects, yet still formed neural crest cells that were able to delaminate and migrate.

"This work demonstrates that species-specific differences in the regulation of neural crest formation and migration are more profound than previously appreciated," said Gridley. "These results shed surprising new light on the roles of Snail family genes during early development in mammals, and the different roles these genes can play during evolution of individual vertebrate species."

Mark Wanner | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>