Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumour development actors ERK1 and ERK2 found to play opposite roles

28.06.2006
The proteins ERK1 and ERK2 may play opposite roles during tumour development. A study published today in the open access journal Journal of Biology shows that the phosphorylating enzyme, or ‘kinase’, ERK1 can inhibit cell proliferation by interfering with the action of the related kinase ERK2. ERK1 and ERK2 are crucial components of the signalling cascade that mediates the function of the Ras oncogenes, an important class of oncogenes involved in the development of many human cancers.

In the absence of ERK1, ERK2 shows increased activity and it promotes both normal and Ras-dependent cell proliferation. In contrast, increased levels of ERK1 in cells significantly slow down their proliferation rate, especially when Ras oncoproteins are activated. These findings disprove the assumption that ERK1 and ERK2 have the same function and are fully interchangeable. This suggests that the mechanism controlling cell proliferation and malignancy is more complex than previously thought.

Chiara Vantaggiato, Ivan Formentini and colleagues in Riccardo Brambilla’s group, from the San Raffaele Scientific Institute in Milan, Italy, used gene targeting and RNA interference (RNAi) techniques to inhibit the MAP kinases ERK1 and ERK2 in mouse cells. Their results show that inhibiting ERK1 enhances ERK2 activity and promotes cell proliferation. In contrast, the knockdown of ERK2 almost completely abolishes cell proliferation. Mouse tumour cells expressing ERK1, but not ERK2, to higher levels than normally seen in tumour cells, grow into very small tumours when transplanted into live mice. Cells expressing only the protein Ras grow into much larger tumours and overexpressing ERK2 doesn’t affect the size of the tumours.

The authors propose that ERK1 and ERK2 are in competition to bind to other regulatory molecules in the signalling pathway. Their activities and expression levels must be finely tuned to ensure normal cell proliferation.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>