Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves make bug break point

18.12.2001


Formation of the Z ring as an E. coli cell divides.
© Qin Sun/University of Texas


Sloshing proteins help bacteria find their waists.

Chemical waves may help a bacterium to divide by pinpointing its middle, according to a new model of protein interactions1.

Bacteria such as Escherichia coli multiply by dividing. Bacterial division (called binary fission) is simpler than human cell division (mitosis). Human cells erect scaffolding to transport components to the two nascent daughter cells at either end; bacteria just pinch in two.



Within this simplicity lies a puzzle. Without sophisticated molecular machinery, how do bacteria organize themselves so that their daughter cells are of roughly equal size?

Martin Howard of Simon Fraser University in Burnaby, British Columbia, and colleagues think that the key is in the sloshing of three proteins, MinC, MinD and MinE, from end to end of the bacteria. This Min family initiates the formation of a protein drawstring, the Z ring, that runs around the cell’s midpoint and contracts to form a narrow waist.

In an E. coli cell, the Min proteins interact, setting up waves that sweep from end to end with a period of about 1-2 minutes. MinC and MinD gather at the cell’s ends, MinE gathers in the middle. MinC disrupts Z-ring formation, so the ring appears only at the midpoint, where the MinC concentration is low.

Howard’s team has devised a mathematical model of the Min family’s interactions. The model shows that the proteins’ oscillations can produce standing waves, like the air waves in an organ pipe, with MinE concentrated in the cell’s middle and MinC and D at the ends.

A similar interplay between reacting and diffusing proteins during development is thought to be responsible for some animals’ stripes. If Min proteins were coloured, a dividing bacterium would be dark at each end with a light band in the middle.

The researchers say that reasonable assumptions about the rates of protein reactions and diffusion give the right single-band form - two bands of MinE, for example, would result in a cell being pinched into three daughter cells. But they acknowledge that these rates have not yet been measured accurately enough to test the model stringently.

References

  1. Howard, M., Rutenberg, A. D. & de Vet, S. Dynamic compartmentalization of bacteria: accurate division in E. coli. Physical Review Letters, 87, 278102, (2001).

    PHILIP BALL | © Nature News Service
    Further information:
    http://www.nature.com/nsu/011220/011220-7.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>