Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'brake' found for neurofibromatosis 1

26.06.2006
A team led by Duke University Medical Center researchers has identified in yeast a molecular "brake" that could inhibit the proliferation of cells that characterizes neurofibromatosis 1, a common hereditary disorder that causes potentially troublesome tumors along nerve fibers.

This brake is a protein that appears to stop the cascade of molecular events that leads to the activation of a cancer-producing gene, or oncogene, that causes the tumors. The oncogene, called Ras, was one of the first oncogenes ever discovered and has been implicated in more than half of all human cancers.

The new finding could have important medical implications, the researchers said, since the gene involved and the processes that regulate its activation are the same in humans as in yeasts. Similar genes in different species are known as homologs.

The researchers reported their findings in the June 23, 2006, issue of the journal Molecular Cell. The study was supported by the National Institutes of Health, the Children's Tumor Foundation, and the Department of Defense's Neurofibromatosis Foundation.

Neurofibromatosis 1 occurs in about one in 3,500 newborn children and is characterized by multiple growths, or neurofibromas, on or under the skin, usually along nerve fibers. Occasionally, the neurofibromas become large and disfiguring, or develop on the brain or spinal cord. About half of patients with neurofibromatosis 1 have learning disabilities.

The Duke researchers focused their attention on the neurofibromatosis 1 gene, which contains the blueprint for the production of neurofibromin, a protein found primarily in nerve cells. A tumor-suppressor protein, neurofibromin keeps the Ras gene in check and prevents abnormal cell growth.

"We know that patients with neurofibromatosis 1 have defects, or mutations, in the neurofibromin gene," said lead researcher Joseph Heitman, M.D., Ph.D. "As a consequence, the protein it produces becomes unstable and can no longer effectively suppress the Ras oncogene. As a result, Ras becomes over-stimulated, and this in turn leads to the formation of the tumors along the nerve fivers."

Scientists have not fully understood how and why the mutated neurofibromin gene leads to activation of the Ras oncogene. In the current study, the researchers discovered two novel proteins that appear to be necessary in neurofibromin's ability to regulate Ras. The team named these novel proteins Gpb1 and Gbp2.

"When the two proteins are present, they keep the yeast neurofibromin homologs stabilized, effectively blocking the molecular signaling pathway that activates Ras," said Toshiaki Harashima, Ph.D., first author of the study. Harashima, a cell biologist, worked as a senior postdoctoral fellow in Heitman's laboratory and now is at the National Institute for Basic Biology in Japan.

"Our findings add to basic understanding of how neurofibromin is stabilized," Harashima said. "By shedding light on these fundamental processes, we hope we can help in the development of new drugs or therapies to block the activation of Ras and prevent this disease."

According to Heitman, yeast, a member of the fungus family, can serve as an effective model for studying basic molecular processes in humans, beyond those involved in neurofibromatosis 1, because the signaling pathways of many genes are remarkably similar in both types of organisms.

"These processes have remained in the genomes of yeasts and humans over a billion years of evolution," Heitman said. "Now that scientists have mapped the entire genome of the baker's yeast we study, Saccharomyces cerevisiae, we are able to look for human gene equivalents using all the latest experimental methods that have been developed over the years using yeasts."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>