Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in a section of amber in Teruel (Spain) of the oldest spider web with its prey in the world

23.06.2006
As much as 110 million years ago, spiders were already weaving complex webs to trap and feed on flying insects. This is confirmed by the discovery of a fragment of spider’s web with adhering insects in a transparent amber stalactite found in Escucha (Teruel). This singular fossil, dating back some 110 million years (Albiense, Early Cretaceous), is the oldest spider’s web with adhering prey to have been found to date and is presented in the June 23 edition of the journal Science, in an article written by the researchers Enrique Peñalver, working with the Cavanilles Institute of Biodiversity and Evolutionary Biology (University of Valencia), Xavier Delclòs of the Department of Stratigraphy, Palaeontology and Marine Geosciences (University of Barcelona) and David Grimaldi from the American Museum of Natural History in New York.

The discovery was made during a palaeontological field study authorised by the Department of Cultural Heritage of the Autonomous Government of Aragon, and the fossils are kept in the collection of the Museo Fundación Conjunto Paleontológico of Teruel-Dinópolis.

Spiders are arthropods that have played an important ecological role in the terrestrial ecosystem since their origin in the Devonian, approximately 385 million years ago. They are abundant in almost all terrestrial habitats – there can be more than 100 per square metre – and are one of the major predators of insects. Their evolutionary success is due largely to a particular innovation: the use of silk threads and the construction of different types of webs to catch flying and jumping insects. Until now, the oldest known example of this particular characteristic of spiders was a silk strand with sticky droplets found in Lebanese amber (between 138 and 124 million years old). For now, little is known about the origins of spiders’ webs, although older fossil spiders have been found preserving the structure of fine strands used for weaving webs. Amber, a fossilised resin, is almost the only medium in which the fine strands of a spider’s web can remain preserved.

The new fossil from Teruel is the oldest direct evidence of a spider’s web used to trap insects. According to experts, the web was constructed by a spider of the Araneae group. The amber section contained the remains of the web with a variety of prey: a fly, a beetle and a small parasitic wasp that fed on the eggs of beetle species that became extinct more than 80 million years ago. It seems that the insects were a source of food for the spider: their abdomens are broken and full of fossil resin and the spider probably sucked out the internal tissue after injecting digestive juices. Once dead and left empty, the insects remained submerged in the resin. The wasp is also caught by a collection of strands that firmly trap its leg, no doubt a strategy used by the spider to keep it more strongly attached to the web.

The web found in the amber section from Teruel is of great scientific interest for two other reasons: it exhibits droplets that would once have been sticky and the geometry of one fragment shows that the strands making up the web were arranged in a regular pattern. Specifically, the web was circular and formed by a sticky spiral on a system of radial strands. These strands, as in the case of current spiders’ webs, had elastic properties: when broken, after coming into contact with the resin stalactite, some remained in the amber, but became twisted or contracted into balls.

Another interesting point is that the fossil dating coincides with the sudden diversification of flowering plants (angiosperms) and pollinating insects. The oldest fossil flowering plants are also from the Early Cretaceous, a period in which they became an important part of terrestrial mediums, which were inhabited principally by gymnosperms (conifers and similar groups). The great success of flowering plants can be attributed to their symbiotic relationship with insects, which act as efficient pollinators. According to the authors, “thanks to this fossil, we can be certain that spiders influenced the early evolution of pollinating insects”.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>