Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in a section of amber in Teruel (Spain) of the oldest spider web with its prey in the world

23.06.2006
As much as 110 million years ago, spiders were already weaving complex webs to trap and feed on flying insects. This is confirmed by the discovery of a fragment of spider’s web with adhering insects in a transparent amber stalactite found in Escucha (Teruel). This singular fossil, dating back some 110 million years (Albiense, Early Cretaceous), is the oldest spider’s web with adhering prey to have been found to date and is presented in the June 23 edition of the journal Science, in an article written by the researchers Enrique Peñalver, working with the Cavanilles Institute of Biodiversity and Evolutionary Biology (University of Valencia), Xavier Delclòs of the Department of Stratigraphy, Palaeontology and Marine Geosciences (University of Barcelona) and David Grimaldi from the American Museum of Natural History in New York.

The discovery was made during a palaeontological field study authorised by the Department of Cultural Heritage of the Autonomous Government of Aragon, and the fossils are kept in the collection of the Museo Fundación Conjunto Paleontológico of Teruel-Dinópolis.

Spiders are arthropods that have played an important ecological role in the terrestrial ecosystem since their origin in the Devonian, approximately 385 million years ago. They are abundant in almost all terrestrial habitats – there can be more than 100 per square metre – and are one of the major predators of insects. Their evolutionary success is due largely to a particular innovation: the use of silk threads and the construction of different types of webs to catch flying and jumping insects. Until now, the oldest known example of this particular characteristic of spiders was a silk strand with sticky droplets found in Lebanese amber (between 138 and 124 million years old). For now, little is known about the origins of spiders’ webs, although older fossil spiders have been found preserving the structure of fine strands used for weaving webs. Amber, a fossilised resin, is almost the only medium in which the fine strands of a spider’s web can remain preserved.

The new fossil from Teruel is the oldest direct evidence of a spider’s web used to trap insects. According to experts, the web was constructed by a spider of the Araneae group. The amber section contained the remains of the web with a variety of prey: a fly, a beetle and a small parasitic wasp that fed on the eggs of beetle species that became extinct more than 80 million years ago. It seems that the insects were a source of food for the spider: their abdomens are broken and full of fossil resin and the spider probably sucked out the internal tissue after injecting digestive juices. Once dead and left empty, the insects remained submerged in the resin. The wasp is also caught by a collection of strands that firmly trap its leg, no doubt a strategy used by the spider to keep it more strongly attached to the web.

The web found in the amber section from Teruel is of great scientific interest for two other reasons: it exhibits droplets that would once have been sticky and the geometry of one fragment shows that the strands making up the web were arranged in a regular pattern. Specifically, the web was circular and formed by a sticky spiral on a system of radial strands. These strands, as in the case of current spiders’ webs, had elastic properties: when broken, after coming into contact with the resin stalactite, some remained in the amber, but became twisted or contracted into balls.

Another interesting point is that the fossil dating coincides with the sudden diversification of flowering plants (angiosperms) and pollinating insects. The oldest fossil flowering plants are also from the Early Cretaceous, a period in which they became an important part of terrestrial mediums, which were inhabited principally by gymnosperms (conifers and similar groups). The great success of flowering plants can be attributed to their symbiotic relationship with insects, which act as efficient pollinators. According to the authors, “thanks to this fossil, we can be certain that spiders influenced the early evolution of pollinating insects”.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>