Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in a section of amber in Teruel (Spain) of the oldest spider web with its prey in the world

23.06.2006
As much as 110 million years ago, spiders were already weaving complex webs to trap and feed on flying insects. This is confirmed by the discovery of a fragment of spider’s web with adhering insects in a transparent amber stalactite found in Escucha (Teruel). This singular fossil, dating back some 110 million years (Albiense, Early Cretaceous), is the oldest spider’s web with adhering prey to have been found to date and is presented in the June 23 edition of the journal Science, in an article written by the researchers Enrique Peñalver, working with the Cavanilles Institute of Biodiversity and Evolutionary Biology (University of Valencia), Xavier Delclòs of the Department of Stratigraphy, Palaeontology and Marine Geosciences (University of Barcelona) and David Grimaldi from the American Museum of Natural History in New York.

The discovery was made during a palaeontological field study authorised by the Department of Cultural Heritage of the Autonomous Government of Aragon, and the fossils are kept in the collection of the Museo Fundación Conjunto Paleontológico of Teruel-Dinópolis.

Spiders are arthropods that have played an important ecological role in the terrestrial ecosystem since their origin in the Devonian, approximately 385 million years ago. They are abundant in almost all terrestrial habitats – there can be more than 100 per square metre – and are one of the major predators of insects. Their evolutionary success is due largely to a particular innovation: the use of silk threads and the construction of different types of webs to catch flying and jumping insects. Until now, the oldest known example of this particular characteristic of spiders was a silk strand with sticky droplets found in Lebanese amber (between 138 and 124 million years old). For now, little is known about the origins of spiders’ webs, although older fossil spiders have been found preserving the structure of fine strands used for weaving webs. Amber, a fossilised resin, is almost the only medium in which the fine strands of a spider’s web can remain preserved.

The new fossil from Teruel is the oldest direct evidence of a spider’s web used to trap insects. According to experts, the web was constructed by a spider of the Araneae group. The amber section contained the remains of the web with a variety of prey: a fly, a beetle and a small parasitic wasp that fed on the eggs of beetle species that became extinct more than 80 million years ago. It seems that the insects were a source of food for the spider: their abdomens are broken and full of fossil resin and the spider probably sucked out the internal tissue after injecting digestive juices. Once dead and left empty, the insects remained submerged in the resin. The wasp is also caught by a collection of strands that firmly trap its leg, no doubt a strategy used by the spider to keep it more strongly attached to the web.

The web found in the amber section from Teruel is of great scientific interest for two other reasons: it exhibits droplets that would once have been sticky and the geometry of one fragment shows that the strands making up the web were arranged in a regular pattern. Specifically, the web was circular and formed by a sticky spiral on a system of radial strands. These strands, as in the case of current spiders’ webs, had elastic properties: when broken, after coming into contact with the resin stalactite, some remained in the amber, but became twisted or contracted into balls.

Another interesting point is that the fossil dating coincides with the sudden diversification of flowering plants (angiosperms) and pollinating insects. The oldest fossil flowering plants are also from the Early Cretaceous, a period in which they became an important part of terrestrial mediums, which were inhabited principally by gymnosperms (conifers and similar groups). The great success of flowering plants can be attributed to their symbiotic relationship with insects, which act as efficient pollinators. According to the authors, “thanks to this fossil, we can be certain that spiders influenced the early evolution of pollinating insects”.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>