Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in a section of amber in Teruel (Spain) of the oldest spider web with its prey in the world

23.06.2006
As much as 110 million years ago, spiders were already weaving complex webs to trap and feed on flying insects. This is confirmed by the discovery of a fragment of spider’s web with adhering insects in a transparent amber stalactite found in Escucha (Teruel). This singular fossil, dating back some 110 million years (Albiense, Early Cretaceous), is the oldest spider’s web with adhering prey to have been found to date and is presented in the June 23 edition of the journal Science, in an article written by the researchers Enrique Peñalver, working with the Cavanilles Institute of Biodiversity and Evolutionary Biology (University of Valencia), Xavier Delclòs of the Department of Stratigraphy, Palaeontology and Marine Geosciences (University of Barcelona) and David Grimaldi from the American Museum of Natural History in New York.

The discovery was made during a palaeontological field study authorised by the Department of Cultural Heritage of the Autonomous Government of Aragon, and the fossils are kept in the collection of the Museo Fundación Conjunto Paleontológico of Teruel-Dinópolis.

Spiders are arthropods that have played an important ecological role in the terrestrial ecosystem since their origin in the Devonian, approximately 385 million years ago. They are abundant in almost all terrestrial habitats – there can be more than 100 per square metre – and are one of the major predators of insects. Their evolutionary success is due largely to a particular innovation: the use of silk threads and the construction of different types of webs to catch flying and jumping insects. Until now, the oldest known example of this particular characteristic of spiders was a silk strand with sticky droplets found in Lebanese amber (between 138 and 124 million years old). For now, little is known about the origins of spiders’ webs, although older fossil spiders have been found preserving the structure of fine strands used for weaving webs. Amber, a fossilised resin, is almost the only medium in which the fine strands of a spider’s web can remain preserved.

The new fossil from Teruel is the oldest direct evidence of a spider’s web used to trap insects. According to experts, the web was constructed by a spider of the Araneae group. The amber section contained the remains of the web with a variety of prey: a fly, a beetle and a small parasitic wasp that fed on the eggs of beetle species that became extinct more than 80 million years ago. It seems that the insects were a source of food for the spider: their abdomens are broken and full of fossil resin and the spider probably sucked out the internal tissue after injecting digestive juices. Once dead and left empty, the insects remained submerged in the resin. The wasp is also caught by a collection of strands that firmly trap its leg, no doubt a strategy used by the spider to keep it more strongly attached to the web.

The web found in the amber section from Teruel is of great scientific interest for two other reasons: it exhibits droplets that would once have been sticky and the geometry of one fragment shows that the strands making up the web were arranged in a regular pattern. Specifically, the web was circular and formed by a sticky spiral on a system of radial strands. These strands, as in the case of current spiders’ webs, had elastic properties: when broken, after coming into contact with the resin stalactite, some remained in the amber, but became twisted or contracted into balls.

Another interesting point is that the fossil dating coincides with the sudden diversification of flowering plants (angiosperms) and pollinating insects. The oldest fossil flowering plants are also from the Early Cretaceous, a period in which they became an important part of terrestrial mediums, which were inhabited principally by gymnosperms (conifers and similar groups). The great success of flowering plants can be attributed to their symbiotic relationship with insects, which act as efficient pollinators. According to the authors, “thanks to this fossil, we can be certain that spiders influenced the early evolution of pollinating insects”.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>