Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor Holds the Key to Mosquito Immune Response

20.06.2006
Researchers Identify Gene Used to Recognize Pathogens

Researchers at the Johns Hopkins Bloomberg School of Public Health have identified a gene in the Anopheles gambiae mosquito’s DNA that is central to the insect’s ability to defend against infectious pathogens, including Plasmodium, the parasite that causes malaria in humans. Potentially, a mosquito with an enhanced capacity to recognize and kill Plasmodium would be unable to transmit malaria. The researchers' findings appear in the June 20, 2006, edition of the journal PLoS Biology.

Insects do not have antibodies, which are essential for pathogen recognition in humans. Instead, insects rely on a limited number of genes coding for adhesive proteins (pattern-recognition receptors) that can adhere to molecular patterns on a pathogen’s surface.

“Each pathogen has its own unique combination of surface patterns. The immune systems of the mosquito and other insects primarily rely on recognizing the pattern of a specific pathogen to activate an immune response that kills the invader,” explained George Dimopoulos, PhD, senior author of the study and assistant professor in the Bloomberg School’s Malaria Research Institute. The AgDscam gene—short for Anopheles gambiae Down syndrome cell adhesion molecule gene—is an essential factor of the mosquito’s immune system and can produce thousands of receptors with different pathogen-binding specificities. AgDscam appears to be capable of recognizing a broad range of different pathogens, and can thereby carry out a function for which a large number of genes would have been needed. Studies previously conducted by other researchers identified an immunity-related function of the Dscam gene in fruit flies.

The researchers found that when the AgDscam gene was deactivated, or “silenced”, the mosquitoes died at a greater rate from bacterial infections. They also found that the numbers of Plasmodium increased 65 percent in the gut of mosquitoes with the silenced gene. The findings suggest that better knowledge of how the AgDscam gene is involved in killing Plasmodium could be used to develop novel ways to control malaria.

The AgDscam gene has 101 protein-coding regions, called exons, that can be spliced together in different combinations to produce over 31,000 possible splice-forms that function as receptors. When the mosquitoes were exposed to different pathogens such as bacteria, fungi and parasites, the AgDscam gene produced an array of different splice-forms with different interaction properties. When the researchers cut AgDscam protein levels in half, they could link AgDscam’s function with the immune system, as the mosquitoes became less resistant to infection. The results showed that infected mosquitoes produced AgDscam splice-forms (receptors) that were better in recognizing—and defending against—the invading pathogen.

“AgDscam is in a way similar to antibodies; different combinations of immunoglobulin domains, which are coded by spliced exons, are used to produce a broad range of receptors. Now we need to learn more about AgDscam’s association with the malaria parasite. A mosquito with an enhanced capacity to recognize and kill Plasmodium would not transmit malaria,” said Dimopoulos.

In a previous study published in the June 8, 2006, edition of PLoS Pathogens, the Hopkins researchers determined that mosquitoes employ the same immune factors to fight off bacterial pathogens as they do to kill malaria-causing Plasmodium parasites.

“AgDscam, a hyper variable immunoglobulin domain containing receptor of the Anopheles gambiae innate immune system” was written by Yuemei Dong, Harry Taylor and George Dimopoulos. Dong and Dimopoulos are with the W. Harry Feinstone Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. Taylor is currently with Meharry Medical College.

The study was supported by grants from the National Institute of Allergy and Infectious Disease, the World Health Organization Training in Tropical Diseases program, the Ellison Medical Foundation and the Johns Hopkins Malaria Research Institute.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>