Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor Holds the Key to Mosquito Immune Response

20.06.2006
Researchers Identify Gene Used to Recognize Pathogens

Researchers at the Johns Hopkins Bloomberg School of Public Health have identified a gene in the Anopheles gambiae mosquito’s DNA that is central to the insect’s ability to defend against infectious pathogens, including Plasmodium, the parasite that causes malaria in humans. Potentially, a mosquito with an enhanced capacity to recognize and kill Plasmodium would be unable to transmit malaria. The researchers' findings appear in the June 20, 2006, edition of the journal PLoS Biology.

Insects do not have antibodies, which are essential for pathogen recognition in humans. Instead, insects rely on a limited number of genes coding for adhesive proteins (pattern-recognition receptors) that can adhere to molecular patterns on a pathogen’s surface.

“Each pathogen has its own unique combination of surface patterns. The immune systems of the mosquito and other insects primarily rely on recognizing the pattern of a specific pathogen to activate an immune response that kills the invader,” explained George Dimopoulos, PhD, senior author of the study and assistant professor in the Bloomberg School’s Malaria Research Institute. The AgDscam gene—short for Anopheles gambiae Down syndrome cell adhesion molecule gene—is an essential factor of the mosquito’s immune system and can produce thousands of receptors with different pathogen-binding specificities. AgDscam appears to be capable of recognizing a broad range of different pathogens, and can thereby carry out a function for which a large number of genes would have been needed. Studies previously conducted by other researchers identified an immunity-related function of the Dscam gene in fruit flies.

The researchers found that when the AgDscam gene was deactivated, or “silenced”, the mosquitoes died at a greater rate from bacterial infections. They also found that the numbers of Plasmodium increased 65 percent in the gut of mosquitoes with the silenced gene. The findings suggest that better knowledge of how the AgDscam gene is involved in killing Plasmodium could be used to develop novel ways to control malaria.

The AgDscam gene has 101 protein-coding regions, called exons, that can be spliced together in different combinations to produce over 31,000 possible splice-forms that function as receptors. When the mosquitoes were exposed to different pathogens such as bacteria, fungi and parasites, the AgDscam gene produced an array of different splice-forms with different interaction properties. When the researchers cut AgDscam protein levels in half, they could link AgDscam’s function with the immune system, as the mosquitoes became less resistant to infection. The results showed that infected mosquitoes produced AgDscam splice-forms (receptors) that were better in recognizing—and defending against—the invading pathogen.

“AgDscam is in a way similar to antibodies; different combinations of immunoglobulin domains, which are coded by spliced exons, are used to produce a broad range of receptors. Now we need to learn more about AgDscam’s association with the malaria parasite. A mosquito with an enhanced capacity to recognize and kill Plasmodium would not transmit malaria,” said Dimopoulos.

In a previous study published in the June 8, 2006, edition of PLoS Pathogens, the Hopkins researchers determined that mosquitoes employ the same immune factors to fight off bacterial pathogens as they do to kill malaria-causing Plasmodium parasites.

“AgDscam, a hyper variable immunoglobulin domain containing receptor of the Anopheles gambiae innate immune system” was written by Yuemei Dong, Harry Taylor and George Dimopoulos. Dong and Dimopoulos are with the W. Harry Feinstone Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. Taylor is currently with Meharry Medical College.

The study was supported by grants from the National Institute of Allergy and Infectious Disease, the World Health Organization Training in Tropical Diseases program, the Ellison Medical Foundation and the Johns Hopkins Malaria Research Institute.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>