Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair in mammal embryos is a matter of timing

20.06.2006
Hints to origin of many cancers is revealed as St. Jude finds that the two pathways used to repair chromosome breaks are active at different times in cell development

Investigators at St. Jude Children's Research Hospital have discovered that the cells of the developing nervous system of the mammalian embryo have an exquisite sense of timing when it comes to fixing broken chromosomes: the cells use one type of repair mechanism during the first half of development and another during the second half.

The team also showed that blocking a repair pathway causes the cell to commit suicide, a process called apoptosis; and that preventing this attempt at apoptosis keeps the damaged cell alive and able to become cancerous. Moreover, the type of cancer that develops depends on which repair pathway was originally disrupted.

These findings reflect the meticulous timing of an important aspect of embryo development and help to explain the origin of a variety of cancers from muscle tumors to brain tumors, researchers said. A report on these results appears in the online prepublication issue of Proceedings of the National Academy of Science.

Specifically, the St. Jude researchers showed that the DNA repair pathway called homologous recombination (HR) works primarily during the first half of embryo development, when many cells are dividing inside the growing body. In contrast, the pathway called non-homologous end joining (NHEJ) becomes an important repair mechanism midway through development, when cells begin to assume their final form and take on specific roles.

HR and NHEJ repair a type of DNA damage called a double-strand break (DSB), which cuts completely through the DNA. DNA exists as two individual strands that associate to form its double-stranded, twisted-ladder--shaped structure.

The researchers also discovered that a protein called ATM is required for apoptosis that is triggered by blocking NHEJ. However, apoptosis triggered by blocking HR does not require this protein. ATM is a critical DNA damage-signaling factor that is required to prevent a severe human neurodegenerative syndrome called ataxia telangiectasia. This new work points to the specific DNA repair pathway that ATM is required to monitor in order to prevent neurodegeneration.

The HR pathway fixes a broken chromosome by using that chromosome's exact "twin" as a blueprint to guide the repair job, according to Peter McKinnon, Ph.D., an associate member of Genetics and Tumor Cell Biology at St. Jude and senior author of the PNAS paper. However, such twins only exist in cells that are preparing to divide into two new cells, a process called mitosis, he noted. Then, as the cell starts to divide, each member of the sister chromatid pair moves into a different new cell.

Because HR is active only during the first half of embryo development, it is the critical repair pathway for the rapidly multiplying precursor and stem cells--cells that populate the body during early development with "daughter" cells--that later take on specific roles, according to researchers.

"Therefore, if HR-related apoptosis is blocked during the early part of embryo development, precursor and stem cells are affected. And since those cells give rise to many different types of cells and tissues, many different types of cancers can arise, such as skin cancer and sarcomas (cancers of bone, cartilage, fat, muscle or blood vessels)," McKinnon said.

But as cells acquire specialized structures and functions, they stop dividing and no longer produce sister chromatids. "When cells begin assuming specific roles in the brain, they stow away most of their chromosomes into tightly wrapped strings of DNA and use only those genes required to survive and allow them to perform these roles," McKinnon explained. "In the absence of sister chromatids to use as blueprints, the NHEJ repair pathway uses various chemical means to join the broken ends of DNA strands."

Since the cell uses NHEJ only when many cells are becoming specialized, cancers that arise in the absence of this pathway are more specific, such as cancer of a type of cell that produces only immune cells called B lymphocytes. The wide variety of cancers that can form represents the fact that HR and NHEJ are important throughout the developing body, and not just in the developing nervous system.

An intriguing exception to the timing of HR and NHEJ during nervous system development is the development of medulloblastoma, a tumor in children that arises in the lower part of the brain called the cerebellum, McKinnon said. The infant cerebellum is still undergoing both rapid growth in the number of cells as well as specialization of many cells, he noted. "That means this part of the brain uses both HR and NHEJ to repair broken chromosomes, so disruption of either mechanism can cause cancer in this area of the brain."

The St. Jude team studied the roles of the two repair pathways using mice that lacked either the gene Xrcc2, which is critical for the HR pathway, or Lig4, which is critical for the NHEJ pathway.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>