Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA repair in mammal embryos is a matter of timing

Hints to origin of many cancers is revealed as St. Jude finds that the two pathways used to repair chromosome breaks are active at different times in cell development

Investigators at St. Jude Children's Research Hospital have discovered that the cells of the developing nervous system of the mammalian embryo have an exquisite sense of timing when it comes to fixing broken chromosomes: the cells use one type of repair mechanism during the first half of development and another during the second half.

The team also showed that blocking a repair pathway causes the cell to commit suicide, a process called apoptosis; and that preventing this attempt at apoptosis keeps the damaged cell alive and able to become cancerous. Moreover, the type of cancer that develops depends on which repair pathway was originally disrupted.

These findings reflect the meticulous timing of an important aspect of embryo development and help to explain the origin of a variety of cancers from muscle tumors to brain tumors, researchers said. A report on these results appears in the online prepublication issue of Proceedings of the National Academy of Science.

Specifically, the St. Jude researchers showed that the DNA repair pathway called homologous recombination (HR) works primarily during the first half of embryo development, when many cells are dividing inside the growing body. In contrast, the pathway called non-homologous end joining (NHEJ) becomes an important repair mechanism midway through development, when cells begin to assume their final form and take on specific roles.

HR and NHEJ repair a type of DNA damage called a double-strand break (DSB), which cuts completely through the DNA. DNA exists as two individual strands that associate to form its double-stranded, twisted-ladder--shaped structure.

The researchers also discovered that a protein called ATM is required for apoptosis that is triggered by blocking NHEJ. However, apoptosis triggered by blocking HR does not require this protein. ATM is a critical DNA damage-signaling factor that is required to prevent a severe human neurodegenerative syndrome called ataxia telangiectasia. This new work points to the specific DNA repair pathway that ATM is required to monitor in order to prevent neurodegeneration.

The HR pathway fixes a broken chromosome by using that chromosome's exact "twin" as a blueprint to guide the repair job, according to Peter McKinnon, Ph.D., an associate member of Genetics and Tumor Cell Biology at St. Jude and senior author of the PNAS paper. However, such twins only exist in cells that are preparing to divide into two new cells, a process called mitosis, he noted. Then, as the cell starts to divide, each member of the sister chromatid pair moves into a different new cell.

Because HR is active only during the first half of embryo development, it is the critical repair pathway for the rapidly multiplying precursor and stem cells--cells that populate the body during early development with "daughter" cells--that later take on specific roles, according to researchers.

"Therefore, if HR-related apoptosis is blocked during the early part of embryo development, precursor and stem cells are affected. And since those cells give rise to many different types of cells and tissues, many different types of cancers can arise, such as skin cancer and sarcomas (cancers of bone, cartilage, fat, muscle or blood vessels)," McKinnon said.

But as cells acquire specialized structures and functions, they stop dividing and no longer produce sister chromatids. "When cells begin assuming specific roles in the brain, they stow away most of their chromosomes into tightly wrapped strings of DNA and use only those genes required to survive and allow them to perform these roles," McKinnon explained. "In the absence of sister chromatids to use as blueprints, the NHEJ repair pathway uses various chemical means to join the broken ends of DNA strands."

Since the cell uses NHEJ only when many cells are becoming specialized, cancers that arise in the absence of this pathway are more specific, such as cancer of a type of cell that produces only immune cells called B lymphocytes. The wide variety of cancers that can form represents the fact that HR and NHEJ are important throughout the developing body, and not just in the developing nervous system.

An intriguing exception to the timing of HR and NHEJ during nervous system development is the development of medulloblastoma, a tumor in children that arises in the lower part of the brain called the cerebellum, McKinnon said. The infant cerebellum is still undergoing both rapid growth in the number of cells as well as specialization of many cells, he noted. "That means this part of the brain uses both HR and NHEJ to repair broken chromosomes, so disruption of either mechanism can cause cancer in this area of the brain."

The St. Jude team studied the roles of the two repair pathways using mice that lacked either the gene Xrcc2, which is critical for the HR pathway, or Lig4, which is critical for the NHEJ pathway.

Bonnie Kourvelas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>