Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Heating Cup, Or Heat In Any Weather

16.06.2006
The invention, for which specialists of the Moscow company “Bargan production group” took out a patent practically all over the world, is called in a somewhat stiff manner: “the packing for changing temperature of the kept product prior to its opening”.

As a matter of fact, this is a glass arranged in a particular way, thus by pressing on its side it is possible to heat the glass contents up to nearly boiling temperature within minutes. To be more precise, nearly up to 90 degrees C. The idea has been in the air for long, but it is only now that Vassily Bargan and his employees managed to implement it.

The water or whatever else is in the glass will be heated in the glass by a chemical reaction (well known to any schoolchild) between zinc and copper sulfate. Active zinc displaces copper from its sulfate. This is accompanied by generation of free copper – and heat, which the inventors suggest to utilize. The task is, firstly, to make the reaction controlled, i.e., to force necessary quantity of heat to be educed within reasonable time, and secondly, to preserve the heat and to direct it to fulfil required job – to heat water, but not the environment. The inventors have successfully coped with the two tasks.

It should be noted, it seems from the outside that theorist chemists should have coped best to with the first task. In fact, the reaction is well known, the heat evolved in its course – is a reference value, so it seems there should be no pitfalls. But they appeared to be multiple. The authors had, after numerous failures of highly erudite professorate, to act in the old manner – to seek optimal parameters empirically, sorting out dozens if not hundreds of variants.

It has turned out that several factors impact the process. The reagents’ ratio and quantity, size of their particles and even the number of molecules of water in copper sulfate crystalline hydrate – all of them have turned out to influence the process rate and intensity. Either the reaction would go too quick, or it would “gather momentum” in no way and hardly glimmer for almost an hour, or emitted heat is hardly enough to warm a tiny coffee cup.

By the way, other developers faced the same problems – but failed to overcome them. In some cases, water was heated up too slowly, or weakly, or well but in a small volume.

The authors of Russian packing managed to achieve a practically record result. After water gets onto the heat-generating composition developed by them (mixture of copper sulfate with zinc powder), a glass of water gets warm both quickly and efficiently. If little time is available, water can be heated up to 70 degrees C within about five minutes, but if you have patience for 9 minutes – water can be warmed up to 90 degrees C.

Such efficiency results from the fact that the inventors have managed to solve the second problem, i.e., they learned to preserve heat of the reaction. To this end, they suggested that the glass should be multi-layer, with heat-insulating case made like a matreshka (set of nesting dolls) of four nesting glasses. Inside is the glass to drink from, filled with water or other contents. On the outside, the external glass made of heat-insulating polysterene, well known by package for hot fast food dishes.

Between them is what the authors called a “thermal module”. Small glasses filled with a mixture of reagents, a small tank with water and a piercing element – a sharp needle made of surgical stainless steel. It is sufficient to press on the side and the needle would pierce through a “bag” of water, the water would leak on the reagents mixed in a proper ratio, and the reaction would go – with heat release, as was predicted.

Now, a bit of self-control is to be demonstrated – and hot water is at your disposal. In fact, such a glass works only once, the packing is a single-shot. Besides, it is rather heavy – its weight is about 100 grams, and if it is filled with water (drinking water, naturally), - almost 300 grams. One would not take it on hiking, but it would be good to put a pack of such glasses into a car. However, a standard beverage can (0.33 litre) weights even more - 352 grams.

The idea seems even more appealing to utilize such a packing in divisions of the Ministry of the Russian Federation for Civil Defense, Emergency Management and Natural Disasters Response –the opportunity to heat water quickly without fire or electricity is sometimes invaluable in emergency situations. Now, such opportunity is available thanks to the Moscow specialists’ effort.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>