Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tie several cancers to common 'oncogene engine'

14.06.2006
Discovery could unify treatment of different lethal malignancies

Researchers at Dana-Farber Cancer Institute report that a common "oncogene engine" – a small family of malfunctioning cell growth switches – drives several seemingly unrelated, lethal forms of cancer, including malignant melanoma. The finding suggests that it may be possible to attack these different cancers with the same therapy.

Reporting in the June issue of Cancer Cell, the scientists showed that a small transcription factor family, made up of several proteins that control the activity of key growth genes, functions abnormally in malignant melanoma, two forms of soft-tissue sarcomas, and a type of kidney cancer that mainly affects children. Still other cancers sharing the same causative mechanism may yet be found, the scientists said.

"One would have never thought of grouping these tumors together," said David E. Fisher, MD, PhD, a pediatric oncologist at Dana-Farber and Children's Hospital Boston, who is senior author of the paper. The lead author is Ian J. Davis, MD, PhD, of Dana-Farber and Children's Hospital Boston.

"The importance of this finding is that it suggests a common 'engine' is driving these seemingly unrelated cancers," Fisher said. "Therefore, it is plausible that common therapeutic strategies might be applied to the tumors as well." The newly grouped cancers – melanoma, clear cell sarcoma, alveolar soft part sarcoma, and pediatric renal carcinoma – are often lethal if surgery cannot completely remove them.

Dana-Farber researchers are already using these new insights in clinical trials of a cancer vaccine, GVAX, that previously has produced rare but dramatic responses in some patients with advanced melanoma. "We have just opened a trial to offer the same vaccine to patients with all of the other cancers in this related family," said Fisher. "Prior to this, virtually no rational experimental treatments were available for these diseases, and patients have already started coming from throughout the country to enlist in our trial."

The transcription factor family is collectively known as MiT. Its kingpin, a protein called MITF, is needed by the body to develop normally functioning melanocytes, the pigment-producing cells of the skin and hair. Mutations that disable MITF cause lack of pigment, as in albinism, but when the gene for MITF is amplified – too many copies in a cell – it can cause melanoma, because the growth genes that are regulated by MITF act like a stuck "on" switch for cell proliferation. Last year, investigators based at Dana-Farber (including Fisher and his colleagues) reported that the MITF gene is amplified in 20 percent of melanoma tumors.

In addition, Fisher and Scott R. Granter, MD, of Children's Hospital Boston – also an author of the Cancer Cell article – previously found that MITF was present in a dangerous type of soft-tissue tumor – clear cell sarcoma – that develops near muscles and tendons in teenagers and young adults. The scientists had been alerted to the possibility of MITF involvement because clear cell sarcoma tumors are sometimes pigmented – a process requiring the MITF transcription factor. In this form of sarcoma, Fisher explained, the MITF gene is overactivated by an abnormal joining, or fusion, of two other genes. MITF, in turn, is directly responsible for malignant growth and survival of the cells. Suppression of MITF by genetic means in the laboratory is lethal to clear cell sarcoma.

While no drug currently exists to directly suppress MITF, the identification of MITF's role opens a door to potential therapies because the researchers have identified some of the genes and proteins that MITF regulates that new drugs could be used to block. One of the targets is Bcl-2, which enables cancer cells to survive when the body has ordered them to self-destruct, and another is CDK-2, a protein that is often abnormal in cancer.

Related to MITF in the MiT transcription factor family are three proteins named TFEB, TFE3, and TFEC. One of them, TFEB, is known to be abnormal in certain kidney carcinomas in children, and TFE3 is involved in another rare soft-tissue tumor, alveolar soft part sarcoma, which tends to affect female children and young adults.

"It is now apparent that all of these tumors share this central family of oncogenes that are functionally interchangeable," said Fisher, who is also a professor of pediatrics at Harvard Medical School. His team demonstrated this point by showing that when tumors in mice were shrunk by disabling one of the transcription factors, replacing it with another member of the family re-started the tumor's growth. In the short term, clinicians will attempt to exploit this interconnectedness by using therapies that may be effective against one tumor to try to treat other tumors, said Fisher. "In the longer term, the focus is on targeting the real culprit – and that is the MiT transcription factors or their targets. There is lots of excitement, and I believe that is the way to really nail these tumors."

Janet Haley Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>