Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tie several cancers to common 'oncogene engine'

14.06.2006
Discovery could unify treatment of different lethal malignancies

Researchers at Dana-Farber Cancer Institute report that a common "oncogene engine" – a small family of malfunctioning cell growth switches – drives several seemingly unrelated, lethal forms of cancer, including malignant melanoma. The finding suggests that it may be possible to attack these different cancers with the same therapy.

Reporting in the June issue of Cancer Cell, the scientists showed that a small transcription factor family, made up of several proteins that control the activity of key growth genes, functions abnormally in malignant melanoma, two forms of soft-tissue sarcomas, and a type of kidney cancer that mainly affects children. Still other cancers sharing the same causative mechanism may yet be found, the scientists said.

"One would have never thought of grouping these tumors together," said David E. Fisher, MD, PhD, a pediatric oncologist at Dana-Farber and Children's Hospital Boston, who is senior author of the paper. The lead author is Ian J. Davis, MD, PhD, of Dana-Farber and Children's Hospital Boston.

"The importance of this finding is that it suggests a common 'engine' is driving these seemingly unrelated cancers," Fisher said. "Therefore, it is plausible that common therapeutic strategies might be applied to the tumors as well." The newly grouped cancers – melanoma, clear cell sarcoma, alveolar soft part sarcoma, and pediatric renal carcinoma – are often lethal if surgery cannot completely remove them.

Dana-Farber researchers are already using these new insights in clinical trials of a cancer vaccine, GVAX, that previously has produced rare but dramatic responses in some patients with advanced melanoma. "We have just opened a trial to offer the same vaccine to patients with all of the other cancers in this related family," said Fisher. "Prior to this, virtually no rational experimental treatments were available for these diseases, and patients have already started coming from throughout the country to enlist in our trial."

The transcription factor family is collectively known as MiT. Its kingpin, a protein called MITF, is needed by the body to develop normally functioning melanocytes, the pigment-producing cells of the skin and hair. Mutations that disable MITF cause lack of pigment, as in albinism, but when the gene for MITF is amplified – too many copies in a cell – it can cause melanoma, because the growth genes that are regulated by MITF act like a stuck "on" switch for cell proliferation. Last year, investigators based at Dana-Farber (including Fisher and his colleagues) reported that the MITF gene is amplified in 20 percent of melanoma tumors.

In addition, Fisher and Scott R. Granter, MD, of Children's Hospital Boston – also an author of the Cancer Cell article – previously found that MITF was present in a dangerous type of soft-tissue tumor – clear cell sarcoma – that develops near muscles and tendons in teenagers and young adults. The scientists had been alerted to the possibility of MITF involvement because clear cell sarcoma tumors are sometimes pigmented – a process requiring the MITF transcription factor. In this form of sarcoma, Fisher explained, the MITF gene is overactivated by an abnormal joining, or fusion, of two other genes. MITF, in turn, is directly responsible for malignant growth and survival of the cells. Suppression of MITF by genetic means in the laboratory is lethal to clear cell sarcoma.

While no drug currently exists to directly suppress MITF, the identification of MITF's role opens a door to potential therapies because the researchers have identified some of the genes and proteins that MITF regulates that new drugs could be used to block. One of the targets is Bcl-2, which enables cancer cells to survive when the body has ordered them to self-destruct, and another is CDK-2, a protein that is often abnormal in cancer.

Related to MITF in the MiT transcription factor family are three proteins named TFEB, TFE3, and TFEC. One of them, TFEB, is known to be abnormal in certain kidney carcinomas in children, and TFE3 is involved in another rare soft-tissue tumor, alveolar soft part sarcoma, which tends to affect female children and young adults.

"It is now apparent that all of these tumors share this central family of oncogenes that are functionally interchangeable," said Fisher, who is also a professor of pediatrics at Harvard Medical School. His team demonstrated this point by showing that when tumors in mice were shrunk by disabling one of the transcription factors, replacing it with another member of the family re-started the tumor's growth. In the short term, clinicians will attempt to exploit this interconnectedness by using therapies that may be effective against one tumor to try to treat other tumors, said Fisher. "In the longer term, the focus is on targeting the real culprit – and that is the MiT transcription factors or their targets. There is lots of excitement, and I believe that is the way to really nail these tumors."

Janet Haley Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>