Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists find regions of rice domestication

14.06.2006
Geographical genetic clusters

Biologists from Washington University in St. Louis and their collaborators from Taiwan have examined the DNA sequence family trees of rice varieties and have determined that the crop was domesticated independently at least twice in various Asian locales.

Jason Londo, Washington University in Arts & Sciences biology doctoral candidate, and his adviser, Barbara A. Schaal, Ph.D., Washington University Spencer T. Olin Professor of Biology in Arts & Sciences, ran genetic tests of more than 300 types of rice, including both wild and domesticated, and found genetic markers that reveal the two major rice types grown today were first grown by humans in India and Myanmar and Thailand (Oryza sativa indica) and in areas in southern China (Oryza sativa japonica).

A paper describing the research was published June 9, 2006, in the on-line issue of the Proceedings of the U.S. National Academy of Science.

"We look where the genetic signature of clusters on a haplotype tree (family tree)," explained Londo. "We chose samples across the entire range of rice and looked for DNA sequences that were shared by both wild and domesticated types. These two major groups clustered out by geography."

DNA is comprised of vast, varied combinations of chemical subunits known as base pairs. Londo, Schaal and their collaborators concentrated on finding genetic markers shared by both cultivated and wild rice types that ranged from 800 to 1,300 base pairs.

Cultivated rice has a genetic signature that defines it as cultivated, Schaal explained.

"What you do is go out and sample all the wild rice across regions and you look for that signature in the wild," said Schaal, who has done similar work with cassava and jocote, a tropical fruit. "You find that the unique signature of cultivated rice is only found in certain geographic regions. And that's how you make the determination of where it came from."

Schaal said that she was surprised and "delighted" by their results.

"People have moved rice around so much and the crop crosses with its wild ancestors pretty readily, so I was fully prepared to see no domestication signal whatsoever," Schaal said. "I would have expected to see clustering of the cultivated rice, but I was delighted to see geographical clustering of the wild rice. I was thrilled that there was even any sort of genetic structure in the wild rice."

In contrast to rice, other staple crops such as wheat, barley and corn appear to have been domesticated just once in history.

Rice is the largest staple crop for human consumption, supplying 20 percent of caloric content for the world.

By finding the geographic origins of rice, researchers can consider ways to improve the crop's nutritional value and disease resistance, which in turn can help impoverished populations in Asia and elsewhere that rely heavily on the crop.

Londo expects to find even more evidence for differing geographic domestication. He said that by using the database that they've gathered, they could design a sampling to target specialty rices such as the aromatic rices basmati and jasmine.

For instance, one direction that the researchers are going is Thailand, where the Karen tribe has been using multiple landraces of rice for many hundreds of years.

Landraces are localized varieties of rice that have been cultivated by traditional methods and have been passed down many generations, Schaal said.

"We're going to try to find out how landrace varieties change after domestication," Schaal said. "These landraces are ancient varieties, which are high in genetic diversity, thus valuable to breeders looking for new traits."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>