Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists find regions of rice domestication

14.06.2006
Geographical genetic clusters

Biologists from Washington University in St. Louis and their collaborators from Taiwan have examined the DNA sequence family trees of rice varieties and have determined that the crop was domesticated independently at least twice in various Asian locales.

Jason Londo, Washington University in Arts & Sciences biology doctoral candidate, and his adviser, Barbara A. Schaal, Ph.D., Washington University Spencer T. Olin Professor of Biology in Arts & Sciences, ran genetic tests of more than 300 types of rice, including both wild and domesticated, and found genetic markers that reveal the two major rice types grown today were first grown by humans in India and Myanmar and Thailand (Oryza sativa indica) and in areas in southern China (Oryza sativa japonica).

A paper describing the research was published June 9, 2006, in the on-line issue of the Proceedings of the U.S. National Academy of Science.

"We look where the genetic signature of clusters on a haplotype tree (family tree)," explained Londo. "We chose samples across the entire range of rice and looked for DNA sequences that were shared by both wild and domesticated types. These two major groups clustered out by geography."

DNA is comprised of vast, varied combinations of chemical subunits known as base pairs. Londo, Schaal and their collaborators concentrated on finding genetic markers shared by both cultivated and wild rice types that ranged from 800 to 1,300 base pairs.

Cultivated rice has a genetic signature that defines it as cultivated, Schaal explained.

"What you do is go out and sample all the wild rice across regions and you look for that signature in the wild," said Schaal, who has done similar work with cassava and jocote, a tropical fruit. "You find that the unique signature of cultivated rice is only found in certain geographic regions. And that's how you make the determination of where it came from."

Schaal said that she was surprised and "delighted" by their results.

"People have moved rice around so much and the crop crosses with its wild ancestors pretty readily, so I was fully prepared to see no domestication signal whatsoever," Schaal said. "I would have expected to see clustering of the cultivated rice, but I was delighted to see geographical clustering of the wild rice. I was thrilled that there was even any sort of genetic structure in the wild rice."

In contrast to rice, other staple crops such as wheat, barley and corn appear to have been domesticated just once in history.

Rice is the largest staple crop for human consumption, supplying 20 percent of caloric content for the world.

By finding the geographic origins of rice, researchers can consider ways to improve the crop's nutritional value and disease resistance, which in turn can help impoverished populations in Asia and elsewhere that rely heavily on the crop.

Londo expects to find even more evidence for differing geographic domestication. He said that by using the database that they've gathered, they could design a sampling to target specialty rices such as the aromatic rices basmati and jasmine.

For instance, one direction that the researchers are going is Thailand, where the Karen tribe has been using multiple landraces of rice for many hundreds of years.

Landraces are localized varieties of rice that have been cultivated by traditional methods and have been passed down many generations, Schaal said.

"We're going to try to find out how landrace varieties change after domestication," Schaal said. "These landraces are ancient varieties, which are high in genetic diversity, thus valuable to breeders looking for new traits."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>