Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First whole-genome scan for links to OCD reveals evidence for genetic susceptibility

12.06.2006
A federally funded team of researchers including several from Johns Hopkins have identified six regions of the human genome that might play a role in susceptibility to obsessive compulsive disorder, or OCD. The study was published online June 6 in Molecular Psychiatry.

"OCD once was thought to be primarily psychological in origin," says Yin Yao Shugart, Ph.D., statistical geneticist and associate professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health. "But now there is growing evidence that there is a genetic basis behind OCD, which will help us better understand the condition," she says.

OCD is characterized by intrusive and senseless thoughts and impulses that together are defined as obsessions, as well as repetitive and intentional behaviors, referred to as compulsions. OCD is estimated to affect up to 3 percent of the American population.

In what the research team describes as the first whole-genome scan to look for genetic "markers" or similarities in the genomes of people with OCD, results identified six potentially significant regions in the genome, which lie on five different chromosomes that appear "linked" to OCD. It's likely that any genes directly associated OCD are to be found in these regions.

"We've long suspected that, rather than being caused by a single gene, OCD has multiple genetic associations," says Jack Samuels, Ph.D., an epidemiologist and assistant professor of psychiatry at the Johns Hopkins School of Medicine.

To conduct the study, the researchers collected blood samples from 1,008 individuals from a total of 219 families in which at least two siblings were clinically diagnosed with OCD.

DNA from each sample was analyzed by the Hopkins Center for Inherited Disease Research (CIDR) using both molecular biology and statistical analysis computer programs. Specific DNA sequences – known as genetic markers – on chromosomes 1, 7, 6, and 15 and two markers on chromosome 3 appear more frequently in the patients with OCD than in those without it. The researchers want to further analyze the genetic regions they identified in this report and use more markers to possibly narrow down these regions to identify OCD risk genes.

The researchers suggest that whatever genes are found don't directly cause OCD but increase risk for it in conjunction with other genes or environmental factors.

"OCD is a relative newcomer to these genetic linkage studies," says Shugart, "so it's extremely important to follow up these findings by looking at more families and using more markers to assess the role of gene-environment interactions in OCD. "We are also very interested in finding genes underlying the different subtypes of OCD," she says.

Careful genetic analysis of different clinical categories of OCD has been limited by currently existing computer programs used in analyzing this type of data. The vast amount of data used in whole-genome analysis requires fine-tuned statistical calculations. The research team is eager to develop new methods in this area. "We predict that such findings may have immediate clinical implications for OCD patients," says Shugart.

Audrey Huang | EurekAlert!
Further information:
http://www.cidr.jhmi.edu/
http://www.hopkinsmedicine.org/ocd/default.asp

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>