Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phytolites' DNA

12.06.2006
Cells with perfectly intact nuclei were discovered in the remains of leaves and fruit of two tree species which grew in the early eocene (about 55 million years ago) in the territory of Yakutia. DNA from nuclei of ancient cells will allow to specify kinship between fossil finds and contemporary plants. The article about the Russian researchers’ discovery has just been published in the Botanical Journal of the Linnean Society (2006, 150: 315-321).

Specialists of the V.L. Komarov Botanical Institute, Russian Academy of Sciences (St. Petersburg ) – Igor Ozerov, Nadezhda Zhinkina, Alexander Rodionov, Alexander Efimov and Eduard Machs have discovered DNA in the remains of leaves and fruit of fossil trees which got the names of Paramyrtaciphyllum and Paramyrtacicarpus. They used to grow in the territory of Yakutia in the early eocene, i.e. about 55 million years ago. Fossil leaves and fruit resemble respective organs of plants of the Eugenia (Myrtaceae gen.) family, where eucalyptus and feijoa belong. Future investigations will prove if the eocene trees really belong to this family: after all, resemblance may be deceptive.

Fortunately, despite such considerable age, the these plants’ cells are surprisingly well preserved: nuclei can be seen in them under a light microscope. Moreover, these nuclei get the typical pink tint after being processed by special reagents, which have been used by cytologists for more than 80 years in order to reveal DNAs.

DNA molecules passed from parents to their posterity bring us traces of events in evolutionary history. By comparing certain DNA sections’ structure of different living creatures, scientists reveal kinship between them. Contemporary biological taxonomy is already impossible to imagine without evolutionary kinship schemes of organisms (phylogenetic trees) based on molecular data. The DNA structure determination has now become a routine laboratory procedure, and it is already difficult to find such a plant or an animal, whereof individual sections of these gigantic molecules have not been studied. So far, only fossil organisms are exceptions.

Some researchers managed to educe DNAs from remains of plants and animals aged several dozens of million years, however, such finds always provoked deep scepticism on behalf of their colleagues. Scepticism is understandable: it seems incredible that macromoluecules could be preserved for so long. It is easier to assume that educed DNAs belonged not to the ancient organism but got into its remains together with some organic contaminations.

The find by Igor Ozerov and his colleagues is above such suspicion. They have managed to see fossil DNA with their own eyes under the microscope. Thereby they have proved that they deal with “native” macromoluecules of fossil trees, and not with the results of later contamination.

Such find is great luck: fossil remains of plants are very rarely preserved so well. But, on the other hand, there is nothing extraordinary about the find. Examples have long been known of excellent preservation of dead cells structure and their macromolecules for thousands of years (for example, in tissues of mammoths' dead bodies), and analysis of DNA from herbarium specimen collected more than 200 years ago has become a commonplace for botanists. The eocene trees’ remains are in a way a “herbarium” as well, which remained intact due to a very rare combination of natural conditions.

Decoding structures of DNAs from ancient cells is still ahead. This effort is connected with new difficulties: within millions of years, large molecules fell into small fragments, which do not always allow to work with them by commom methods. The St. Petersburg researchers, however, hope that DNA analysis will allow to identify exactly to what contemporary plants Paramyrtaciphyllum and Paramyrtacicarpus relate.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>