Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phytolites' DNA

12.06.2006
Cells with perfectly intact nuclei were discovered in the remains of leaves and fruit of two tree species which grew in the early eocene (about 55 million years ago) in the territory of Yakutia. DNA from nuclei of ancient cells will allow to specify kinship between fossil finds and contemporary plants. The article about the Russian researchers’ discovery has just been published in the Botanical Journal of the Linnean Society (2006, 150: 315-321).

Specialists of the V.L. Komarov Botanical Institute, Russian Academy of Sciences (St. Petersburg ) – Igor Ozerov, Nadezhda Zhinkina, Alexander Rodionov, Alexander Efimov and Eduard Machs have discovered DNA in the remains of leaves and fruit of fossil trees which got the names of Paramyrtaciphyllum and Paramyrtacicarpus. They used to grow in the territory of Yakutia in the early eocene, i.e. about 55 million years ago. Fossil leaves and fruit resemble respective organs of plants of the Eugenia (Myrtaceae gen.) family, where eucalyptus and feijoa belong. Future investigations will prove if the eocene trees really belong to this family: after all, resemblance may be deceptive.

Fortunately, despite such considerable age, the these plants’ cells are surprisingly well preserved: nuclei can be seen in them under a light microscope. Moreover, these nuclei get the typical pink tint after being processed by special reagents, which have been used by cytologists for more than 80 years in order to reveal DNAs.

DNA molecules passed from parents to their posterity bring us traces of events in evolutionary history. By comparing certain DNA sections’ structure of different living creatures, scientists reveal kinship between them. Contemporary biological taxonomy is already impossible to imagine without evolutionary kinship schemes of organisms (phylogenetic trees) based on molecular data. The DNA structure determination has now become a routine laboratory procedure, and it is already difficult to find such a plant or an animal, whereof individual sections of these gigantic molecules have not been studied. So far, only fossil organisms are exceptions.

Some researchers managed to educe DNAs from remains of plants and animals aged several dozens of million years, however, such finds always provoked deep scepticism on behalf of their colleagues. Scepticism is understandable: it seems incredible that macromoluecules could be preserved for so long. It is easier to assume that educed DNAs belonged not to the ancient organism but got into its remains together with some organic contaminations.

The find by Igor Ozerov and his colleagues is above such suspicion. They have managed to see fossil DNA with their own eyes under the microscope. Thereby they have proved that they deal with “native” macromoluecules of fossil trees, and not with the results of later contamination.

Such find is great luck: fossil remains of plants are very rarely preserved so well. But, on the other hand, there is nothing extraordinary about the find. Examples have long been known of excellent preservation of dead cells structure and their macromolecules for thousands of years (for example, in tissues of mammoths' dead bodies), and analysis of DNA from herbarium specimen collected more than 200 years ago has become a commonplace for botanists. The eocene trees’ remains are in a way a “herbarium” as well, which remained intact due to a very rare combination of natural conditions.

Decoding structures of DNAs from ancient cells is still ahead. This effort is connected with new difficulties: within millions of years, large molecules fell into small fragments, which do not always allow to work with them by commom methods. The St. Petersburg researchers, however, hope that DNA analysis will allow to identify exactly to what contemporary plants Paramyrtaciphyllum and Paramyrtacicarpus relate.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>