Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein associated with severe preeclampsia

06.06.2006
Study finds that the endoglin protein acts together with sFlt1 to rapidly escalate disease

Building on their earlier discovery which found that elevated levels of the sFlt1 placental protein leads to the onset of preeclampsia, researchers at Beth Israel Deaconess Medical Center (BIDMC), in collaboration with a research team from The Hospital for Sick Children, Toronto, have identified a second protein which, in combination with sFlt1, escalates preeclampsia to a severe – and life-threatening -- state.

These new findings, reported in the June 4, 2006 on-line issue of Nature Medicine, provide another critical piece of information about this puzzling disease, which complicates five percent of all pregnancies worldwide and is a major cause of maternal and fetal mortality, particularly in developing nations.

"Preeclampsia typically develops in the third trimester of pregnancy and is characterized by high blood pressure, edema and protein in the urine," explains the study’s senior author S. Ananth Karumanchi, MD, a nephrologist in the Center for Vascular Biology at BIDMC and Assistant Professor of Medicine, Obstetrics and Gynecology at Harvard Medical School.

Three years ago, Karumanchi and his colleagues demonstrated that the placenta plays a central role in the course of these events, and that elevated levels of a placental protein called sFlt1 (soluble fms-like tyrosine kinase) are key to the onset of the disease.

However, for unknown reasons, a subset of preeclampsia patients will go on to experience severe preeclampsia – a group of dramatically escalated symptoms characterized by a sudden, massive rise in blood pressure, which can lead to the onset of seizures, as well as the development of fetal growth restriction and the HELLP syndrome. HELLP, which stands for hemolysis, elevated liver enzymes and low platelets, indicates that the mother’s liver and blood-clotting systems are not functioning properly, and the health of both mother and infant are in serious danger.

"During the course of our previous experiments [to confirm the role of sFlt1 in the disease] we observed that although all of the animals treated with sFlt1 exhibited telltale symptoms of hypertension and proteinuria, they did not all go on to develop symptoms of the HELLP syndrome," notes Karumanchi.

"We, therefore, hypothesized that other placenta-derived proteins must be acting jointly with sFlt1 to induce vascular damage and escalate the disease to its severe form."

Using microarray analysis of human placental specimens from patients with preeclampsia, Karumanchi and his coauthors observed that a protein known as endoglin was significantly upregulated. (Endoglin was discovered 20 years ago in the laboratory of study collaborator Michelle Letarte at The Hospital for Sick Children, Toronto.) A co-receptor for transforming growth factor beta family proteins, endoglin is expressed on endothelial cells lining the blood vessels, and thereby plays an important role in maintaining the health and integrity of the vascular system.

"Our further investigations revealed that the extracellular region of the endoglin protein is shed into maternal circulation," explains Karumanchi. "We discovered that this shed form -- referred to as ’soluble endoglin’ – was circulating in very high quantities among women with severe forms of preeclampsia."

In order to understand the protein’s biological role, the investigators next administered soluble endoglin to pregnant rats; their results showed that this protein was indeed amplifying the vascular damage mediated by sFlt1, resulting in the symptoms of severe preeclampsia.

"What is apparently happening is that both sFlt1 and soluble endoglin are inhibiting the functions of two angiogenic growth factors – vascular endothelial growth factor [VEGF] and transforming growth factor beta," explains Karumanchi. "The diminished signaling of these growth factors in the vasculature adversely affects the health of the mother’s small blood vessels." The result is the onset of severe preeclampsia and its dangerous consequences for both mother and infant.

"We believe that these latest findings will have important diagnostic and therapeutic implications for the management of this disease," says Karumanchi.

Adds Benjamin Sachs, MBBS, DPH, Chief of the Department of Obstetrics and Gynecology at BIDMC, "Preeclampsia affects 200,000 pregnancies a year in the United States and often leads to premature births. Severe preeclampsia is one of the world’s leading causes of maternal and fetal mortality and poses a particular risk to women in developing countries. This new information provides us with another key piece of evidence as we work toward developing the means to diagnose, and eventually treat, this disease."

Study coauthors include BIDMC investigators Shivalingappa Venkatesha, PhD, Chun Lam, MD, Jun-ichi Hanai, MD, PhD, Tadanori Mammoto, MD, PhD, Yuval Bdolah, MD, Kee-Hak Lim, MD, Hai-Tao Yuan, MD, Towia Libermann, PhD, Isaac Stillman, MD, Franklin Epstein, MD, Frank Sellke, MD, PhD, and Vikas Sukhatme, MD, PhD; Mourad Toporsian, PhD, and Michelle Letarte, PhD, of The Hospital for Sick Children, University of Toronto, Ontario, Canada; Yeon Kim, MD, and Roberto Romero, MD, of the National Institute of Child Health and Human Development, Bethesda, Maryland; Drucilla Roberts, MD, PhD, of Massachusetts General Hospital; and Patricia D’Amore, PhD, of Schepens Eye Research Institute, Boston.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>