Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preclinical costs reduced by new human cell culture system from Northern Germany

02.06.2006
The young biotech start up company PRIMACYT has developed a long-term human hepatocyte culture system that may be used as a biosensor for the analysis of drugs, food additives, and chemicals. The entrepreneur team has developed serum-free long-term culture techniques for hepatocytes. Currently, several other companies are validating this culture technique in a multi-center study. The technology is presented on international conferences in San Francisco, USA April 2006 and Linz, Austria June 2006.

The PRIMACYT Cell Culture Technology GmbH has developed serum-free long-term culture techniques for hepatocytes. These technologies allow utilization of human and other mammalian hepatocytes as biosensors for screening purposes, while the hepatocyte specific functions remain intact. On this basis, new innovative products and services will be created to provide pharmaceutical and biotech companies as well as public research institutions with state of the art solutions for their specific demands.


Mikroskopische Aufnahme einer humanen Leberzelle, Primacyt GmbH

The major advantages of this hepatocyte culture system are its robustness and the fact that the hepatocytes remain differentiated and functional for several weeks. Preliminary studies have revealed that repetitive cycles of drug administrations can be applied to the cells. In other words, the hepatocytes may not only be used for one experiment, but instead can be "recycled" and may be used for a second, a third or even a fourth round of experiments. Thereby, the system is designed to reduce the number of animal experiments and to reduce the costs of preclinical studies.

The company is presenting its human hepatocyte culture system HEPAC2 at the annual Experimental Biology meeting in San Francisco, April 1-5, and at the 13th Conference on Alternatives to Animal Testing in Linz, Austria, on June 2-4. "These are a great opportunities for our company to demonstrate the advantages of our culture system to a broad audience" said Dr. Dieter Runge, co-founder and CEO of this young biotech company.

PRIMACYT Cell Culture Technology GmbH has its roots in HeparCell GmbH, originally founded by 4 private individuals in June 2004. In December 2004 HeparCell completed a private financing round led by Genius Venture Capital GmbH. In January 2005 HeparCell started its business at the Technologie- und Gewerbezentrum Schwerin. In October 2005 HeparCell GmbH changed its corporate name to PRIMACYT Cell Culture Technology. PRIMACYT is member of BioCon Valley.

BioCon Valley is the initiative for Life Science and health economy of Mecklenburg-Vorpommern, Germany. As one of the German BioRegions BioCon Valley supports the commercial use of modern life sciences and bio- and medical technologies in the region. BioCon Valley s tasks are networking, managing life science centers (bioincubators), project management and coordination, and life science specific public relation. BioCon Valley collaborates in strategic partnership to the life science initiatives at the Baltic Sea (www.scanbalt.org).

Contact:
PRIMACYT Cell Culture Technology GmbH
Dr. Dieter Runge
Hagenower Straße 73
19061 Schwerin
Germany
Telefon: +49 (0)385 - 3993 600
Telefax: +49 (0)385 - 3993 602
E-mail: info@primacyt.de

Dr. Heinrich Cuypers | idw
Further information:
http://www.primacyt.de
http://www.bcv.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>