Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lurking lung cancer alleles

01.06.2006
Researchers identify common sequence differences in human DNA that confer genetic susceptibility to lung cancer

In the largest genome-wide scan for lung cancer-susceptibility genes to date, scientists from The Institute of Cancer Research have identified 64 gene variants that may predispose some individuals to lung cancer. These genetic variants are known as "low-penetrance alleles" because they only occasionally stimulate tumor development. The study, which appears today in the scientific journal Genome Research, will eventually help researchers to pinpoint the various genetic and environmental causes of lung cancer.

As the most common malignancy in the world, lung cancer is predominantly caused by a single environmental factor: tobacco smoke. Studies have shown that long-term cigarette smokers have a 10-fold increased risk of acquiring lung cancer when compared to non-smokers. But in recent years, scientists have accumulated evidence that hereditary factors also contribute to lung cancer susceptibility. For example, a higher prevalence of the disease has been observed in patients with Bloom’s and Werner’s syndromes, who have inherited mutations in specific genes that are involved in DNA replication, recombination, and repair.

"Our research suggests that it is highly unlikely that only one or two genes are primarily responsible for the genetic basis of lung cancer," explains Dr. Richard Houlston from The Institute of Cancer Research and Cancer Research UK, who co-led the study with Dr. Tim Eisen from The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. "The exact nature of lung cancer susceptibility is probably much more complex. We hypothesized that most of the inherited genetic risk is posed by sequence changes in the genome that augment the effects of exposure to cigarette smoke."

As part of the U.K.-based Genetic Lung Cancer Predisposition Study (GELCAPS), the researchers tested DNA samples from 2707 healthy individuals and 1529 lung cancer patients. In each of these samples, they evaluated a total 1476 DNA variants known as single nucleotide polymorphisms (SNPs) in 871 genes with a presumptive role in cancer biology.

In total, 64 of the SNPs were found to be associated with lung cancer development. Several of these SNPs alter the structure or function of an expressed protein, so it is possible that they are directly responsible for the observed association. Additional research will be required to understand the exact role that each of these genetic variants plays in increasing one’s risk of lung cancer.

"Whilst our research indicates that certain individuals could be at higher risk of developing the disease, it has been proven that the majority of cases of lung cancer are caused by tobacco smoke. It’s important to remember that tobacco smoke is far and away the biggest risk factor for lung cancer," warns Houlston.

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>