Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique speeds up detecting, treating wound bacteria

30.05.2006
For Dr. Sydney Finegold, research is like reading a really good mystery or detective story. "But it is real life and one can see the results in one’s own patients," he said. "So, one can have great fun while accomplishing worthwhile things."

With a grant from the Department of Defense, Finegold has taken his passion for research and applied it to a problem that affects civilians as well as injured service members: wound bacteria.

"The flora of wound infections is very complex," he said. "At times there can be 12 or more organisms present, and most clinical laboratories are not proficient in isolating and identifying anaerobes, which often predominate."

Using DNA detection methods though a technique called real-time polymerase chain reaction, the physician-researcher from the West Los Angeles Veterans Administration Medical Center can drastically cut the time it takes for lab personnel to figure out just what bacteria they’re dealing with.

"The big advantage of real-time PCR is that we get quantitative information and accurate identification on the organisms in five hours or so, whereas the current procedure--culturing and identifying organisms by biochemical activity, etc.--can take one to several days and sometimes weeks, depending on the organism," he said.

His technique is also useful in detecting flora that can’t easily be grown in culture because no one’s been able to determine just what the bacteria like in the way of nutrients and environmental conditions.

The earlier the lab staff has answers, the earlier the correct treatment can begin. Initial treatment is necessarily empiric.

"When the patient is quite ill, clinicians necessarily use a broad spectrum (antibiotic), hoping not to overlook anything," Finegold said. "The resulting overuse of antibiotics definitely contributes to antibiotic resistance."

According to the Centers for Disease Control and Prevention Web site, antibiotic resistance is a growing threat to the general population, as well as the military. In fact, more than 70 percent of the bacteria that cause hospital-acquired infections are resistant to at least one of the drugs most commonly used to treat them.

So far Finegold and his colleagues have been able use real-time PCR to detect 20 of the most common bacteria found in wounds, including one, Finegoldia magna, which had been named after him in the past. A World War II and Korean War veteran who confesses he’s had an "ongoing love affair with anaerobes for several decades," Finegold has two additional eponymous bacteria--Alistipes finegoldia and Bacteroides finegoldii--that will probably also be found in wounds but aren’t part of those detectable by PCR. Yet.

"We will definitely add to the list," he said. "We are currently basing our selection of organisms to detect (through real-time PCR) on the current literature on surgical infections, but we expect to find many more organisms with the molecular techniques we will use."

Finegold’s research endeavors were funded, in part, by a grant from the DoD’s Peer Reviewed Medical Research Program. Congress created the program in 1999 to promote research in health issues the military faces. Since its inception through 2005, the program has spent almost $300 million to fund nearly 200 projects in a range of medical topics, including combat casualty care and technology and infectious disease research.

Though Finegold’s research funding comes from the Defense Department, his results will help both military and civilian patients.

"Most of us in infectious diseases are looking for ways to speed up microbiologic results so that we can treat more intelligently from the beginning," he said. "We see surgical wound infections commonly, and when the DoD put out a request for proposals it was an opportunity to get good funding so that we could make some headway in this important area."

Finegold’s study is a four-year project, and his team is awaiting approvals to test the real-time PCR detection method on actual patients. As his work progresses, he hopes to publish early results that may be put to use in both civilian and military hospitals, if and when it’s feasible.

For more information on the DoD’s Peer Reviewed Medical Research Program, go to http://cdmrp.army.milprmrpdefault.htm . The Peer Reviewed Medical Research Program is one of the Congressionally Directed Medical Research Programs directed by Col. Janet R. Harris.

The Peer Reviewed Medical Research Program is an administrative funding agent for the U.S. Army Medical Research and Materiel Command. The command is the Army’s medical materiel developer, with lead agency responsibility for medical research, development and acquisition.

The command’s expertise in these critical areas helps establish and maintain the capabilities required by the Army to fight and win on the battlefield.

Karen Fleming-Michael | EurekAlert!
Further information:
http://www.dcmilitary.com

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>