Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal cell cultures kept on the straight and narrow

30.05.2006
An improved technique for culturing cells, developed at the National Institute of Standards and Technology (NIST), may enable new, fundamental insights into the behavior of neuronal cells.

Culturing particular types of cells in isolation is a basic technique for measuring how they respond to various stimuli, testing new drugs, and similar cell biology tasks. Neuronal cells, which make up the central nervous system in mammals, are both particularly important and particularly hard to culture. They are highly specialized and choosy about their environment--normally they only survive and develop when cultured on a layer of non-neuronal "glial" cells that provide cellular support services. There are usually far more glial cells than neuronal cells, which makes it hard to image neuronal cells and measure their activity against the glial background.

In a paper in the American Chemical Society’s journal Langmuir*, NIST researchers detail a microfluidics technique to culture neuronal cells in relative isolation on a variety of cell-culture surfaces, and to pattern the cells on the surface to study the effects of geometry on cell development. The trick is to mask the substrate with multiple alternating layers of positively and negatively charged polymers, building up a so-called polyelectrolyte multilayer (PEM). Properly selected, the PEM coating convinces the neuronal cells that they’re in a good environment to attach, develop and produce the characteristic neuron projections and synapses, all without a glial layer.

Even better, according to the NIST team, microfluidic channels can be used to lay down the PEM coating in patterned lines just a few micrometers wide. Neuronal cells will largely confine themselves to the pattern, enabling a variety of cell-geometry experiments, such as measuring the maximum gap between lines that can be bridged by neural axons and dendrites.

The research is part of a multidisciplinary NIST program to develop biochemical measurement technologies based on microfluidics.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>