Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal cell cultures kept on the straight and narrow

30.05.2006
An improved technique for culturing cells, developed at the National Institute of Standards and Technology (NIST), may enable new, fundamental insights into the behavior of neuronal cells.

Culturing particular types of cells in isolation is a basic technique for measuring how they respond to various stimuli, testing new drugs, and similar cell biology tasks. Neuronal cells, which make up the central nervous system in mammals, are both particularly important and particularly hard to culture. They are highly specialized and choosy about their environment--normally they only survive and develop when cultured on a layer of non-neuronal "glial" cells that provide cellular support services. There are usually far more glial cells than neuronal cells, which makes it hard to image neuronal cells and measure their activity against the glial background.

In a paper in the American Chemical Society’s journal Langmuir*, NIST researchers detail a microfluidics technique to culture neuronal cells in relative isolation on a variety of cell-culture surfaces, and to pattern the cells on the surface to study the effects of geometry on cell development. The trick is to mask the substrate with multiple alternating layers of positively and negatively charged polymers, building up a so-called polyelectrolyte multilayer (PEM). Properly selected, the PEM coating convinces the neuronal cells that they’re in a good environment to attach, develop and produce the characteristic neuron projections and synapses, all without a glial layer.

Even better, according to the NIST team, microfluidic channels can be used to lay down the PEM coating in patterned lines just a few micrometers wide. Neuronal cells will largely confine themselves to the pattern, enabling a variety of cell-geometry experiments, such as measuring the maximum gap between lines that can be bridged by neural axons and dendrites.

The research is part of a multidisciplinary NIST program to develop biochemical measurement technologies based on microfluidics.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>