Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super-sized cassava plants may help fight hunger in Africa

In a recent study, genetically modified cassava plants produced roots that were more than two-and-a-half times the size of normal cassava roots.

The findings could help ease hunger in many countries where people rely heavily on the cassava plant (Manihot esculenta) as a primary food source, said Richard Sayre, the study’s lead author and a professor of plant cellular and molecular biology at Ohio State University.

The researchers used a gene from the bacterium E. coli to genetically modify cassava plants. The plants, which were grown in a greenhouse, produced roots that were an average of 2.6 times larger than those produced by regular cassava plants.

“Not only did these plants produce larger roots, but the whole plant was bigger and had more leaves,” Sayre said. Both the roots and leaves of the cassava plant are edible.

Cassava is the primary food source for more than 250 million Africans – about 40 percent of the continent’s population. And the plant’s starchy tuberous root is a substantial portion of the diet of nearly 600 million people worldwide.

Sayre said he hopes to offer these plants to countries where cassava is an important crop.

The current study appears in the online early issue of the Plant Biotechnology Journal. Sayre collaborated with Ohio State colleague Uzoma Ihemere and scientists from BASF Plant Science in Research Triangle Park, N.C., and BARC-West in Beltsville, Md., who formerly worked on this project in his laboratory.

Sayre said that cassava produces sugar more efficiently than any other cultivated plant.

“We wanted to find a way to help the plant redirect that excess sugar and use it to make starch,” Sayre said.

The researchers used a variety of cassava native to Colombia (cassava was brought to Africa from South America by the Portuguese in the 1500s.) They inserted into three cassava plants an E. coli gene that controls starch production. A non-modified fourth plant served as a control.

“Cassava actually has this same gene,” Sayre said. “But the bacterial version of the gene is about a hundred times more active.”

The modified plants converted more of their sugar into starch, as shown by an increase in root size as well as the number of roots and leaves produced by each modified plant.

The roots of the modified plants were up to 2.6 fold larger than the roots of a non-modified plant (an average of 198 grams for the biggest roots vs. 74 grams for the roots of the non-modified plant.) The modified plants produced a maximum of 12 roots, compared to the seven roots produced by the non-modified plant. These modified plants also produced a third more leaves – a maximum of 123 leaves per modified plant vs. 92 leaves per non-modified plant.

Sayre said that the bigger roots produced by the plants were just that – bigger. They weren’t necessarily more nutritious. And they would still need to be processed quickly and properly after harvesting, as the roots and leaves of poorly processed cassava plants contain a substance that triggers the production of cyanide.

In previous work, Sayre helped create cassava that produced little to no cyanide once it is harvested.

He is also the principal investigator of an ongoing project focused on improving the nutritional content of cassava. In this work Sayre leads a team of national and international scientists focused on increasing the vitamin, mineral and protein content of the plant.

The current study was supported in part by the Rockefeller Foundation, the Centro Internacional Agricultura Tropical (CIAT) and Ohio State.

Richard Sayre | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>