Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-sized cassava plants may help fight hunger in Africa

29.05.2006
In a recent study, genetically modified cassava plants produced roots that were more than two-and-a-half times the size of normal cassava roots.

The findings could help ease hunger in many countries where people rely heavily on the cassava plant (Manihot esculenta) as a primary food source, said Richard Sayre, the study’s lead author and a professor of plant cellular and molecular biology at Ohio State University.

The researchers used a gene from the bacterium E. coli to genetically modify cassava plants. The plants, which were grown in a greenhouse, produced roots that were an average of 2.6 times larger than those produced by regular cassava plants.

“Not only did these plants produce larger roots, but the whole plant was bigger and had more leaves,” Sayre said. Both the roots and leaves of the cassava plant are edible.

Cassava is the primary food source for more than 250 million Africans – about 40 percent of the continent’s population. And the plant’s starchy tuberous root is a substantial portion of the diet of nearly 600 million people worldwide.

Sayre said he hopes to offer these plants to countries where cassava is an important crop.

The current study appears in the online early issue of the Plant Biotechnology Journal. Sayre collaborated with Ohio State colleague Uzoma Ihemere and scientists from BASF Plant Science in Research Triangle Park, N.C., and BARC-West in Beltsville, Md., who formerly worked on this project in his laboratory.

Sayre said that cassava produces sugar more efficiently than any other cultivated plant.

“We wanted to find a way to help the plant redirect that excess sugar and use it to make starch,” Sayre said.

The researchers used a variety of cassava native to Colombia (cassava was brought to Africa from South America by the Portuguese in the 1500s.) They inserted into three cassava plants an E. coli gene that controls starch production. A non-modified fourth plant served as a control.

“Cassava actually has this same gene,” Sayre said. “But the bacterial version of the gene is about a hundred times more active.”

The modified plants converted more of their sugar into starch, as shown by an increase in root size as well as the number of roots and leaves produced by each modified plant.

The roots of the modified plants were up to 2.6 fold larger than the roots of a non-modified plant (an average of 198 grams for the biggest roots vs. 74 grams for the roots of the non-modified plant.) The modified plants produced a maximum of 12 roots, compared to the seven roots produced by the non-modified plant. These modified plants also produced a third more leaves – a maximum of 123 leaves per modified plant vs. 92 leaves per non-modified plant.

Sayre said that the bigger roots produced by the plants were just that – bigger. They weren’t necessarily more nutritious. And they would still need to be processed quickly and properly after harvesting, as the roots and leaves of poorly processed cassava plants contain a substance that triggers the production of cyanide.

In previous work, Sayre helped create cassava that produced little to no cyanide once it is harvested.

He is also the principal investigator of an ongoing project focused on improving the nutritional content of cassava. In this work Sayre leads a team of national and international scientists focused on increasing the vitamin, mineral and protein content of the plant.

The current study was supported in part by the Rockefeller Foundation, the Centro Internacional Agricultura Tropical (CIAT) and Ohio State.

Richard Sayre | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>