Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How ancient whales lost their legs, got sleek and conquered the oceans

When ancient whales finally parted company with the last remnants of their legs about 35 million years ago, a relatively sudden genetic event may have crowned an eons-long shrinking process.

An international group of scientists led by Hans Thewissen, Ph.D., a professor of anatomy at Northeastern Ohio Universities College of Medicine, has used developmental data from contemporary spotted dolphins and fossils of ancient whales to try to pinpoint the genetic changes that could have caused whales, dolphins and porpoises to lose their hind limbs.

More than 50 million years ago the ancestors of whales and dolphins were four-footed land animals, not unlike large dogs. They became the sleek swimmers we recognize today during the next 15 million years, losing their hind limbs in a dramatic example of evolutionary change.

"We can see from fossils that whales clearly lived on land - they actually share a common ancestor with hippos, camels and deer," said team member Martin Cohn, Ph.D., a developmental biologist and associate professor with the UF departments of zoology and anatomy and cell biology and a member of the UF Genetics Institute. "Their transition to an aquatic lifestyle occurred long before they eliminated their hind limbs. During the transition, their limbs became smaller, but they kept the same number and arrangement of hind limb bones as their terrestrial ancestors."

In findings to be published this week in the Proceedings of the National Academy of Sciences, scientists say the gradual shrinkage of the whales’ hind limbs over 15 million years was the result of slowly accumulated genetic changes that influenced the size of the limbs and that these changes happened sometime late in development, during the fetal period.

However, the actual loss of the hind limb occurred much further along in the evolutionary process, when a drastic change occurred to inactivate a gene essential for limb development. This gene - called Sonic hedgehog - functions during the first quarter of gestation in the embryonic period of the animals’ development, before the fetal period.

In all limbed vertebrates, Sonic hedgehog is required for normal limbs to develop beyond the knee and elbow joints. Because ancient whales’ hind limbs remained perfectly formed all the way to the toes even as they became smaller suggests that Sonic hedgehog was still functioning to pattern the limb skeleton.

The new research shows that, near the end of 15 million years, with the hind limbs of ancient whales nonfunctional and all but gone, lack of Sonic hedgehog clearly comes into play. While the animals still may have developed embryonic hind limb buds, as happens in today’s spotted dolphins, they didn’t have the Sonic hedgehog required to grow a complete or even partial limb, although it is active elsewhere in the embryo.

The team also showed why Sonic hedgehog became inactive and all traces of hind limbs vanished at the end of this stage of whale evolution, said Cohn. A gene called Hand2, which normally functions as a switch to turn on Sonic hedgehog, was shown to be inactive in the hind limb buds of dolphins. Without it, limb development grinds to a halt.

"By integrating data from fossils with developmental data from embryonic dolphins, we were able to trace these genetic changes to the point in time when they happened," Thewissen said.

"Studies on swimming in mammals show that a sleek body is necessary for efficient swimming, because projecting organs such as rudimentary hind limbs cause a lot of drag, and slow a swimmer down," said Thewissen, who spends about a month every year in Pakistan and India collecting fossils that document the land-to-water transition of whales.

Researchers say the findings tend to support traditional evolutionary theory, a la Charles Darwin, that says minor changes over vast expanses of time add up to big changes. And while Sonic hedgehog’s role in the evolution of hind limbs in ancient whales is becoming apparent, it is still not fully defined.

"It’s clear when ancient whales lost all vestiges of the limb it was probably triggered by loss of Sonic hedgehog," said Clifford Tabin, Ph.D., a professor of genetics at Harvard Medical School who was not involved in the research. "But it’s hard to say for certain because you’re looking at events long after they occurred. As they suggest, there could have been a continual decrease in Sonic as the limbs reduced until the modern version of the animal arrived."

The study itself, combining fossil and developmental data, is notable, Tabin said.

"Whales went through this remarkable transformation to become more like the ancestral fish," Tabin said. "Convergence of evolutionary studies and developmental genetics give us another piece in this growing tapestry of how genetic changes lead to morphological change. It is a remarkable process that was achieved simply and led to profound consequences in how whales were able to survive. Only now in the last five years are we developing this understanding of how the world of evolution is controlled genetically."

John D. Pastor | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>