Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Protection from Cold Decoded

18.05.2006
A biochemical regulator described by UCR Plant Biologist Jian Kang Zhu explains how plants protect themselves from cold temperatures.

In response to cold, plants trigger a cascade of genetic reactions that allow them to survive. University of California, Riverside Professor of Plant Cell Biology Jian-Kang Zhu has described how a little-known biochemical reaction regulates that genetic cascade.


Zhu’s findings were published in the May 15 online version of the Proceedings of the National Academy of Sciences in a paper titled The Negative Regulator of Plant Cold Responses, HOS1 is a RING E3 Ligase That Mediates the Ubiquitation and Degredation of ICE1. Zhu co-authored the paper with UCR colleagues Chun Hai Dong and Manu Agarwal; and Yiyue Zhang and Qi Xie, from the Institute of Genetics and Development of the Chinese Academy of Sciences in Beijing.

This negative regulator, known as high expression of osmotically responsive gene 1 (HOS1), acts essentially as a biochemical gate that cuts off the plant’s cold protection, Zhu said. The HOS1 gene product interacts with another gene product known as ICE1 that kicks off the genetic cascade that provides the plant’s cold protection proteins, according to the paper. The interaction worked both in the test tube and in the live plant.

“The better we understand this molecular mechanism, the better we can control the process of increasing the plant’s freezing tolerance without causing negative impacts,” Zhu said. “This process should apply to all plants and can help us better use crops of subtropical origin such as corn, rice, avocadoes and strawberries.”

Zhu said the discovery of how HOS1 acts on plants should help his overall research efforts into how plants respond to environmental stresses such as cold, soil salinity and drought.

“From a genetic and molecular standpoint, these responses are all related,” Zhu said. “Some of the same genes are involved in all of these responses and understanding how they work can help us develop crops that can better withstand these conditions.”

Zhu said he plans on continuing his research on how HOS1 and ICE1 recognize each other and work together to help plants deal with cold weather conditions. This line of inquiry should better explain how plant cells initially respond to cold and other adverse conditions.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>