Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research finds surveys of larval-stage organisms effective for measuring marine biodiversity

15.05.2006
BU biologist discovers diversity in mantis shrimp underestimated

There is a push to document the biodiversity of the world within 25 years. However, the magnitude of this challenge is not well known, especially when it comes to vast and often inaccessible marine environments. To date, surveys of species diversity in the world’s oceans have focused on adult organisms, but new research from Boston University has found that studying marine life in its larval phase with DNA barcoding is a valuable way to estimate biodiversity.

Using this novel approach, Paul Barber, an assistant professor of biology at BU, discovered that biodiversity is greatly underestimated in the region of the Pacific known as the "Coral Triangle" and in the Red Sea. The study, which focused on coral reef-dwelling mantis shrimp (stomatopods), is the first to compare larval stage organisms to adults.

Through DNA barcoding – a new method not commonly used in aquatic settings – Dr. Barber and his colleague, Sarah Boyce of Harvard University, compared the DNA sequences of a random sampling of stomatopod larvae to a sequence database of most known mature species of mantis shrimp. The comparisons revealed numerous new varieties of shrimp that are completely unknown in their adult forms.

"Our results show that biodiversity in mantis shrimp in these regions is estimated to be at least 50 to 150 percent higher than presently believed," said Barber. "Given that few groups of marine organisms are as well studied as mantis shrimp, the biodiversity in other groups is likely even more poorly known. What’s unique about this study is that we didn’t just discover new species, we used DNA barcoding to quantify how much biodiversity is out there that we don’t know about."

According to Barber, the results suggest that examining marine life in the larval stage offers a new and highly effective way to estimate biodiversity since most organisms have a developmental phase where minute larvae disperse on ocean currents.

"For some groups of organisms, scientists can more easily collect larvae for sampling since the habitats of the mature marine species can be totally unreachable," said Barber. "This method gives us a better idea of how well we know a particular area. There may be parts of the world that we think we know a lot about, like the Caribbean for example, but the sequencing of larva there may uncover countless more species that we never knew existed."

In addition to an alternative way to explore marine biodiversity, Barber hopes the findings will promote conservation. Despite being considered a "biodiversity hotspot," the Coral Triangle is one of the most threatened marine environments in the world. Often areas with particularly high rates of biodiversity are targeted for conservation, so the new method could help by highlighting potential regions for protection.

Barber also believes this new information will move scientists one step closer to the goal of documenting the entire world’s species, both in aquatic and terrestrial settings.

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>