Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research finds surveys of larval-stage organisms effective for measuring marine biodiversity

BU biologist discovers diversity in mantis shrimp underestimated

There is a push to document the biodiversity of the world within 25 years. However, the magnitude of this challenge is not well known, especially when it comes to vast and often inaccessible marine environments. To date, surveys of species diversity in the world’s oceans have focused on adult organisms, but new research from Boston University has found that studying marine life in its larval phase with DNA barcoding is a valuable way to estimate biodiversity.

Using this novel approach, Paul Barber, an assistant professor of biology at BU, discovered that biodiversity is greatly underestimated in the region of the Pacific known as the "Coral Triangle" and in the Red Sea. The study, which focused on coral reef-dwelling mantis shrimp (stomatopods), is the first to compare larval stage organisms to adults.

Through DNA barcoding – a new method not commonly used in aquatic settings – Dr. Barber and his colleague, Sarah Boyce of Harvard University, compared the DNA sequences of a random sampling of stomatopod larvae to a sequence database of most known mature species of mantis shrimp. The comparisons revealed numerous new varieties of shrimp that are completely unknown in their adult forms.

"Our results show that biodiversity in mantis shrimp in these regions is estimated to be at least 50 to 150 percent higher than presently believed," said Barber. "Given that few groups of marine organisms are as well studied as mantis shrimp, the biodiversity in other groups is likely even more poorly known. What’s unique about this study is that we didn’t just discover new species, we used DNA barcoding to quantify how much biodiversity is out there that we don’t know about."

According to Barber, the results suggest that examining marine life in the larval stage offers a new and highly effective way to estimate biodiversity since most organisms have a developmental phase where minute larvae disperse on ocean currents.

"For some groups of organisms, scientists can more easily collect larvae for sampling since the habitats of the mature marine species can be totally unreachable," said Barber. "This method gives us a better idea of how well we know a particular area. There may be parts of the world that we think we know a lot about, like the Caribbean for example, but the sequencing of larva there may uncover countless more species that we never knew existed."

In addition to an alternative way to explore marine biodiversity, Barber hopes the findings will promote conservation. Despite being considered a "biodiversity hotspot," the Coral Triangle is one of the most threatened marine environments in the world. Often areas with particularly high rates of biodiversity are targeted for conservation, so the new method could help by highlighting potential regions for protection.

Barber also believes this new information will move scientists one step closer to the goal of documenting the entire world’s species, both in aquatic and terrestrial settings.

Kira Edler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>