Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosy females make colourful males

12.05.2006
Female fish prefer brightly coloured males because they are easier to see and are in better shape concludes Dutch researcher Martine Maan following her study of fish speciation in the East African Lakes. Environmental variation subsequently leads to differences in preference and eventually to speciation.

Evolutionary theory predicts that species can diverge if different females choose different characteristics in males. Yet females often pay attention to traits that reveal something about the quality of a male. As a result, females are likely to share the same preferences. In Lake Victoria cichlid fish, Martine Maan found a solution for this paradox: in different species, different traits reveal male quality.

She examined two closely related species, one with blue males and the other with red males. Females prefer males of the right colour, blue or red, and within those categories they choose the most brightly coloured males. They do so for good reasons: brightly coloured males from both species carry fewer parasites and are thus in better condition. Moreover, both species are adapted to different infection risks, which are associated with a difference in water depth and food choice. It is therefore in the females’ interest to mate with their own males.

Red and blue light

Yet how did these differences evolve? The red species occurs in deeper water than the blue species and therefore experiences different light conditions. Behavioural experiments showed that both species have adapted to this: the red species is more sensitive to red light and the blue species is more sensitive to blue light. For females of the red species, red males are therefore more conspicuous than blue ones, and vice versa. Males of other colours are inconspicuous and unattractive, and therefore produce few offspring. Eventually only the bright red and bright blue fish remain, and two separate species can arise.

Due to the introduction of the Nile perch, deforestation and population growth, water transparency in Lake Victoria is declining. In turbid water, cichlid females are less choosy and males are less brightly coloured. This research therefore underlines the importance of measures to counteract the ongoing eutrophication of the lake.

Martine Maan | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6PEFRJ_Eng

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>