Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Choosy females make colourful males

Female fish prefer brightly coloured males because they are easier to see and are in better shape concludes Dutch researcher Martine Maan following her study of fish speciation in the East African Lakes. Environmental variation subsequently leads to differences in preference and eventually to speciation.

Evolutionary theory predicts that species can diverge if different females choose different characteristics in males. Yet females often pay attention to traits that reveal something about the quality of a male. As a result, females are likely to share the same preferences. In Lake Victoria cichlid fish, Martine Maan found a solution for this paradox: in different species, different traits reveal male quality.

She examined two closely related species, one with blue males and the other with red males. Females prefer males of the right colour, blue or red, and within those categories they choose the most brightly coloured males. They do so for good reasons: brightly coloured males from both species carry fewer parasites and are thus in better condition. Moreover, both species are adapted to different infection risks, which are associated with a difference in water depth and food choice. It is therefore in the females’ interest to mate with their own males.

Red and blue light

Yet how did these differences evolve? The red species occurs in deeper water than the blue species and therefore experiences different light conditions. Behavioural experiments showed that both species have adapted to this: the red species is more sensitive to red light and the blue species is more sensitive to blue light. For females of the red species, red males are therefore more conspicuous than blue ones, and vice versa. Males of other colours are inconspicuous and unattractive, and therefore produce few offspring. Eventually only the bright red and bright blue fish remain, and two separate species can arise.

Due to the introduction of the Nile perch, deforestation and population growth, water transparency in Lake Victoria is declining. In turbid water, cichlid females are less choosy and males are less brightly coloured. This research therefore underlines the importance of measures to counteract the ongoing eutrophication of the lake.

Martine Maan | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>