Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes hunters tracking the tumour

09.05.2006
2nd IFOM-IEO Campus Meeting on Cancer

What is the best strategy to determine the specific function of a gene? Certainly a good idea is to eliminate the gene and see what kind of effects this move has on the whole organism. With this goal in mind, the Dana-Farber Cancer Institute in Boston, the Whitehead Institute and the Broad Institute at MIT and Harvard – together with a consortium of five bioinformatics companies (Bristol-Myers, Novartis Pharma, Eli Lilly, Sigma, Astra Zeneca) – are about concluding the establishment of a technological platform that will allow the scientists to investigate the specific role of some genes in the onset of tumours. They will accomplish this goal by selectively inhibiting the genes’ activity. This ambitious and important project was presented yesterday by William C. Hahn, from the Dana-Farber and the Broad Institute, during the 2nd IFOM-IEO Campus Meeting on Cancer.

“We are building up – says Hahn, who leads the project – what is technically called an RNAi library, a collection of interfering RNAs that work according to a predator-prey rationale. In other words, we have generated a huge assembly of hunter-molecules, so far around 104,000, that are able to target a prey: some 22,000 human and murine genes.”

When these molecules are introduced in the cells they can selectively inactivate a gene by interfering with its activity. How? First of all the hunter spots its prey: the RNA molecule produced from a specific gene that carries the instructions for the synthesis of a protein. Then it binds the prey and destroys it. “At this point – details the scientist – we check the outcome and examine what are the changes that this loss-of-function determines. So far we have identified a set of genes whose role is still unknown. When we combine this information with other data obtained with different analytical approaches we should be able to speed up the procedures necessary to proceed from the singling out of a target and the production of adequate drugs.”

Up to now by using the interfering-inactivation technique the scientists have detected a number of genes, and a hundred of these turned out to control mitosis: a process of cell division which results in the production of two identical daughter cells. “Some of them were already known – pinpoints Hahn – but others were identified for the first time thanks to this technique. Our next goal is to identify genes that are involved in the onset of some tumours and to characterize their role in detail”. Further targets are also two classes of enzymes – called kinases and phosphatases – involved in some steps of the neoplastic transformation.

An important feature of the platform created at Harvard and MIT is the fact that not only the results of this research, but also materials, methods and the newly-built molecules will be accessible at no cost to the whole scientific community. “This approach – explains Hahn – stems from the spirit that animates the Broad Institute, and is the true spirit that we should expect in all kinds of science.”

Francesca Noceti | alfa
Further information:
http://www.semm.it/meeting/cancer06/
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>