Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes hunters tracking the tumour

09.05.2006
2nd IFOM-IEO Campus Meeting on Cancer

What is the best strategy to determine the specific function of a gene? Certainly a good idea is to eliminate the gene and see what kind of effects this move has on the whole organism. With this goal in mind, the Dana-Farber Cancer Institute in Boston, the Whitehead Institute and the Broad Institute at MIT and Harvard – together with a consortium of five bioinformatics companies (Bristol-Myers, Novartis Pharma, Eli Lilly, Sigma, Astra Zeneca) – are about concluding the establishment of a technological platform that will allow the scientists to investigate the specific role of some genes in the onset of tumours. They will accomplish this goal by selectively inhibiting the genes’ activity. This ambitious and important project was presented yesterday by William C. Hahn, from the Dana-Farber and the Broad Institute, during the 2nd IFOM-IEO Campus Meeting on Cancer.

“We are building up – says Hahn, who leads the project – what is technically called an RNAi library, a collection of interfering RNAs that work according to a predator-prey rationale. In other words, we have generated a huge assembly of hunter-molecules, so far around 104,000, that are able to target a prey: some 22,000 human and murine genes.”

When these molecules are introduced in the cells they can selectively inactivate a gene by interfering with its activity. How? First of all the hunter spots its prey: the RNA molecule produced from a specific gene that carries the instructions for the synthesis of a protein. Then it binds the prey and destroys it. “At this point – details the scientist – we check the outcome and examine what are the changes that this loss-of-function determines. So far we have identified a set of genes whose role is still unknown. When we combine this information with other data obtained with different analytical approaches we should be able to speed up the procedures necessary to proceed from the singling out of a target and the production of adequate drugs.”

Up to now by using the interfering-inactivation technique the scientists have detected a number of genes, and a hundred of these turned out to control mitosis: a process of cell division which results in the production of two identical daughter cells. “Some of them were already known – pinpoints Hahn – but others were identified for the first time thanks to this technique. Our next goal is to identify genes that are involved in the onset of some tumours and to characterize their role in detail”. Further targets are also two classes of enzymes – called kinases and phosphatases – involved in some steps of the neoplastic transformation.

An important feature of the platform created at Harvard and MIT is the fact that not only the results of this research, but also materials, methods and the newly-built molecules will be accessible at no cost to the whole scientific community. “This approach – explains Hahn – stems from the spirit that animates the Broad Institute, and is the true spirit that we should expect in all kinds of science.”

Francesca Noceti | alfa
Further information:
http://www.semm.it/meeting/cancer06/
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>