Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk scientists untangle steroid hormone signaling in plants

05.05.2006


When given extra shots of the plant steroid brassinolide, plants "pump up" like major league baseball players do on steroids. Tracing brassinolide’s signal deep into the cell’s nucleus, researchers at the Salk Institute for Biological Studies have unraveled how the growth-boosting hormone accomplishes its job at the molecular level.

The Salk researchers, led by Joanne Chory, a professor in the Plant Molecular and Cellular Biology Laboratory and a Howard Hughes Medical Institute investigator, published their findings in this week’s journal Nature.

"The steroid hormone brassinolide is central to plants’ growth. Without it, plants remain extreme dwarfs. If we are going to understand how plants grow, we need to understand the response pathway to this hormone," says Chory. "This study clarifies what’s going on downstream in the nucleus when brassinolide signals a plant cell to grow."



Brassinolide, a member of a family of plant hormones known as brassinosteroids, is a key element of plants’ response to light, enabling them to adjust growth to reach light or strengthen stems. Exploiting its potent growth-promoting properties could increase crop yields or enable growers to make plants more resistant to drought, pathogens, and cold weather.

Unfortunately, synthesizing brassinosteroids in the lab is complicated and expensive. But understanding how plant steroids work at the molecular level may one day lead to cheap and simple ways to bulk up crop harvests.

Likewise, since low brassinolide levels are associated with dwarfism, manipulating hormone levels during dormant seasons may allow growers to control the height of grasses, trees or other plants, thereby eliminating the need to constantly manicure gardens.

Based on earlier studies, the Salk researchers had developed a model that explained what happens inside a plant cell when brassinolide signals a plant cell to start growing.

But a model is just a model. Often evidence in favor of a particular model is indirect and could support multiple models. Describing the components of the signaling cascade that relays brassinolide’s message into a cell’s nucleus, postdoctoral researcher and lead author of the study Grégory Vert, now at the Centre national de la recherche scientifique (CNRS) in Montpellier, France, said, "All the players are old acquaintances and we knew from genetic studies that they were involved in this pathway. But when we revisited the old crew it became clear that we had to revise the original model."

When brassinosteroids bind a receptor on the cell’s surface, an intracellular enzyme called BIN2 is inactivated by an unknown mechanism. Previously, investigators thought that inactivation of BIN2, which is a kinase, freed a second protein known as BES1 from entrapment in the cytoplasm, the watery compartment surrounding a cell’s nucleus, and allowed it to migrate or "shuttle" into the nucleus where it tweaked the activity of genes regulating plant growth.

A closer inspection, however, revealed that BIN2 resides in multiple compartments of a cell, including the nucleus, and it is there--not in the cytoplasm--that BIN2 meets up with BES1 and prevents it from activating growth genes. "All of a sudden the ’BES1 shuttle model’ no longer made sense," says Vert, adding that it took many carefully designed experiments to convince himself and others that it was time to retire the old model.

A new picture of how brassinosteroids stimulate plant growth now emerges based on those experiments: steroid hormones are still thought to inactivate BIN2 and reciprocally activate BES1, but instead of freeing BES1 to shuttle into the nucleus, it is now clear that the crucial activation step occurs in the nucleus where BES1 is already poised for action. Once released from BIN2 inhibition, BES1 associates with itself and other regulatory factors, and this modified form of BES1 binds to DNA, activating scores of target genes.

Referring to the work of Vert and other members of the brassinosteroid team, Chory says, "The old model may be out, but Greg’s new studies, together with those of former postdocs, Yanhai Yin and Zhiyong Wang, have allowed us to unravel the nuclear events controlling brassinosteroid responses at the genomic level. This turns our attention to the last mystery: the gap in our understanding of the events between steroid binding at the cell surface and these nuclear mechanisms."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>