Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk scientists untangle steroid hormone signaling in plants

05.05.2006


When given extra shots of the plant steroid brassinolide, plants "pump up" like major league baseball players do on steroids. Tracing brassinolide’s signal deep into the cell’s nucleus, researchers at the Salk Institute for Biological Studies have unraveled how the growth-boosting hormone accomplishes its job at the molecular level.

The Salk researchers, led by Joanne Chory, a professor in the Plant Molecular and Cellular Biology Laboratory and a Howard Hughes Medical Institute investigator, published their findings in this week’s journal Nature.

"The steroid hormone brassinolide is central to plants’ growth. Without it, plants remain extreme dwarfs. If we are going to understand how plants grow, we need to understand the response pathway to this hormone," says Chory. "This study clarifies what’s going on downstream in the nucleus when brassinolide signals a plant cell to grow."



Brassinolide, a member of a family of plant hormones known as brassinosteroids, is a key element of plants’ response to light, enabling them to adjust growth to reach light or strengthen stems. Exploiting its potent growth-promoting properties could increase crop yields or enable growers to make plants more resistant to drought, pathogens, and cold weather.

Unfortunately, synthesizing brassinosteroids in the lab is complicated and expensive. But understanding how plant steroids work at the molecular level may one day lead to cheap and simple ways to bulk up crop harvests.

Likewise, since low brassinolide levels are associated with dwarfism, manipulating hormone levels during dormant seasons may allow growers to control the height of grasses, trees or other plants, thereby eliminating the need to constantly manicure gardens.

Based on earlier studies, the Salk researchers had developed a model that explained what happens inside a plant cell when brassinolide signals a plant cell to start growing.

But a model is just a model. Often evidence in favor of a particular model is indirect and could support multiple models. Describing the components of the signaling cascade that relays brassinolide’s message into a cell’s nucleus, postdoctoral researcher and lead author of the study Grégory Vert, now at the Centre national de la recherche scientifique (CNRS) in Montpellier, France, said, "All the players are old acquaintances and we knew from genetic studies that they were involved in this pathway. But when we revisited the old crew it became clear that we had to revise the original model."

When brassinosteroids bind a receptor on the cell’s surface, an intracellular enzyme called BIN2 is inactivated by an unknown mechanism. Previously, investigators thought that inactivation of BIN2, which is a kinase, freed a second protein known as BES1 from entrapment in the cytoplasm, the watery compartment surrounding a cell’s nucleus, and allowed it to migrate or "shuttle" into the nucleus where it tweaked the activity of genes regulating plant growth.

A closer inspection, however, revealed that BIN2 resides in multiple compartments of a cell, including the nucleus, and it is there--not in the cytoplasm--that BIN2 meets up with BES1 and prevents it from activating growth genes. "All of a sudden the ’BES1 shuttle model’ no longer made sense," says Vert, adding that it took many carefully designed experiments to convince himself and others that it was time to retire the old model.

A new picture of how brassinosteroids stimulate plant growth now emerges based on those experiments: steroid hormones are still thought to inactivate BIN2 and reciprocally activate BES1, but instead of freeing BES1 to shuttle into the nucleus, it is now clear that the crucial activation step occurs in the nucleus where BES1 is already poised for action. Once released from BIN2 inhibition, BES1 associates with itself and other regulatory factors, and this modified form of BES1 binds to DNA, activating scores of target genes.

Referring to the work of Vert and other members of the brassinosteroid team, Chory says, "The old model may be out, but Greg’s new studies, together with those of former postdocs, Yanhai Yin and Zhiyong Wang, have allowed us to unravel the nuclear events controlling brassinosteroid responses at the genomic level. This turns our attention to the last mystery: the gap in our understanding of the events between steroid binding at the cell surface and these nuclear mechanisms."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>