Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why mice don’t get cancer of the retina

03.05.2006
Humans are more susceptible to developing the eye cancer retinoblastoma than mice because, unlike humans, mice can compensate for the loss of activity of a gene critical to normal retinal development , according to results of a study by investigators at St. Jude Children’s Research Hospital.

The study, published today in the open access journal BMC Biology, explains why humans with a defective copy of the Retinoblastoma gene RB1 are at high risk of developing cancer of the retina, or retinoblastoma, whereas mice with a similar genetic profile do not develop the cancer.

Stacy Donovan and Brett Schweers from St Jude Children’s Research Hospital in Memphis, USA and colleagues from St Jude’s and from the University of Tennessee Health Science Center in Memphis, studied the expression of the Retinoblastoma proteins Rb (RB1 in humans), p107 and p130 throughout the development of mouse and human retinae, using molecular amplification and immunolabelling techniques.

Donovan et al. find that p107, Rb and p130 are expressed at different stages in the developing mouse retina, with p107 expressed first and Rb and 130 expressed during the late stages of development. The authors show that, in mutant mouse embryos that do not express Rb at all, the levels of p107 are much higher than in wild-type embryos at the same stage in development. The reverse situation is observed in mutant embryos that do not express p107. This suggests that Rb and p107 compensate for each other in retinal progenitor cells and prevent the deregulated proliferation of the cells that leads to retinoblastoma. By contrast, RB1 is the main protein expressed during retinal development in humans. The protein p107 is only slightly expressed during development and cannot compensate for the lack of RB1, which leads to retinoblastoma.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>