Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana-like compounds suppress the immune response

28.04.2006
A group of Japanese scientists has discovered that cannabinoids can cause some white blood cells to lose their ability to migrate to the sites of infection and inflammation. These findings, which appear in the May 5 issue of the Journal of Biological Chemistry, could have potential use in the development of novel anti-inflammatory drugs.

The cannabinoids are a group of chemicals that include marijuana. These compounds bind to and activate the body’s cannabinoid receptors. There are two types of cannabinoid receptor: the peripheral cannabinoid receptor (CB2) which is predominantly found in immune cells, and the central cannabinoid receptor (CB1) which occurs in the central nervous system.

Recent studies have suggested that CB2 may be involved in a wide range of physiologic phenomena related to immunity, although research on this function is still at an early stage. Among the possible immunological roles for CB2 is an involvement in the initiation of white blood cell migration to sites of infection and inflammation.

In the Journal of Biological Chemistry study, which was featured as a "Paper of the Week", Yumi Tohyama and colleagues used an in vitro model of blood cell migration to study the involvement of CB2 in the recruitment white blood cells. They found that treating the blood cells with compounds that bind to CB2 suppresses the migration of the cells. When they examined the cells, they discovered that they had lost their ability to develop a front/rear polarity, which is something they need to effectively migrate to sites of infection and inflammation.

Because cannabinoids seem to suppress activated white blood cells, Tohyama believes they could have a potential use in the treatment of inflammatory diseases.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>