Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana-like compounds suppress the immune response

28.04.2006
A group of Japanese scientists has discovered that cannabinoids can cause some white blood cells to lose their ability to migrate to the sites of infection and inflammation. These findings, which appear in the May 5 issue of the Journal of Biological Chemistry, could have potential use in the development of novel anti-inflammatory drugs.

The cannabinoids are a group of chemicals that include marijuana. These compounds bind to and activate the body’s cannabinoid receptors. There are two types of cannabinoid receptor: the peripheral cannabinoid receptor (CB2) which is predominantly found in immune cells, and the central cannabinoid receptor (CB1) which occurs in the central nervous system.

Recent studies have suggested that CB2 may be involved in a wide range of physiologic phenomena related to immunity, although research on this function is still at an early stage. Among the possible immunological roles for CB2 is an involvement in the initiation of white blood cell migration to sites of infection and inflammation.

In the Journal of Biological Chemistry study, which was featured as a "Paper of the Week", Yumi Tohyama and colleagues used an in vitro model of blood cell migration to study the involvement of CB2 in the recruitment white blood cells. They found that treating the blood cells with compounds that bind to CB2 suppresses the migration of the cells. When they examined the cells, they discovered that they had lost their ability to develop a front/rear polarity, which is something they need to effectively migrate to sites of infection and inflammation.

Because cannabinoids seem to suppress activated white blood cells, Tohyama believes they could have a potential use in the treatment of inflammatory diseases.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>