Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse study reveals human X-SCID gene therapy poses substantial cancer risk

New animal studies conducted at the Salk Institute for Biological Studies show that the only human gene therapy treatment to date considered to be largely successful, is, in fact, riskier than realized.

The Salk researchers, led by Inder Verma, Ph.D., a professor in the Laboratory of Genetics, discovered that the healthy copy, which replaces the defective gene can itself promote cancer development. Their findings appear in this week’s issue of the journal Nature.

Niels-Bjarne R. Woods, Ph.D., a post-doctoral researcher in Inder Verma’s team followed mice treated with the IL2RG gene three times longer than any study had ever before, and found that one-third of the animals developed lymphoma later in their life. This is the same gene being given to patients with X-linked severe combined immune deficiency (X-SCID) – commonly known as the "bubble boy" syndrome – in small clinical trials being conducted in France, the United States, the United Kingdom, and Australia.

Although replacement of IL2RG can cure X-SCID, the Salk scientists urge caution in the use of such therapy on the basis of their new findings.

"We were surprised by the strength of the association between IL2RG gene therapy and development of lymphoma," says Woods. "These results suggest that curing X-SCID by replacing IL2RG in the manner it is currently being done puts patients at an increased risk of developing cancer."

Woods adds that the study could explain why one of three children in the French trial developed T-cell leukemia. Two developed the disease because IL2RG inserted itself into the cellular genome next to a known cancer-causing gene and activated it, but the cause of the third cancer case had not been solved.

The French trial is the largest to date to test IL2RG gene therapy, and of the 10 children treated, nine were successfully cured of X-SCID, although cancer was diagnosed in three of the children. Halted for a time, the trial is now continuing on a case-by-case basis, according to Woods.

In the studies leading up to the human clinical studies, mice were studied post-transplant for less than 6 months, which is a traditional research protocol. The Salk research team, however, allowed the mice to live through their natural life span, which is about one-and-a-half years. Mice that developed lymphoma did so at an average of 10 months of age.

In the human gene therapy trials, leukemia did not appear until 2-3 years after treatment, Woods says.

"This indicates that preclinical experimental treatments involving transgenes should include long-term follow-up before entering a clinical trial," says Woods.

But, more fundamentally, the Salk study suggests that replacement of a gene that serves multiple functions in the body may be much more problematic than therapy to replace a gene that serves a single function, says Verma.

"The bottom line here is that if you replace a gene that has multiple effects, you have to know more about its regulation and its ability to affect other genes, and that requires extensive preclinical work and a much more careful analysis," he says.

X-SCID is caused by mutations in IL2RG, which provides instructions for making the common gamma chain protein. This powerful protein, found on the surface of immature blood cells in the bone marrow, works with other proteins to direct the growth and maturation of a number of different immune system cells, including T cells, B cells, and natural killer cells. These immune system cells that kill invading viruses and bacteria, produce antibodies as well as help regulate the entire immune system. Without the common gamma chain, these cells cannot develop normally, and are unable to protect the body.

Researchers who also contributed to this paper include Virginie Bottero, Ph.D., in the Laboratory of Genetics at the Salk Institute, as well as Manfred Schmidt, Ph.D., and Christof von Kalle, Ph.D., both at the Cancer Research Center in Heidelberg, Germany.

Gina Kirchweger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>