Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The birds and the b’s: Challenging Chomsky, starlings learn ’human-only’ syntax patterns

27.04.2006
The European starling – long known as a virtuoso songbird and as an expert mimic too – may also soon gain a reputation as something of a "grammar-marm." This three-ounce bird, new research shows, can learn syntactic patterns formerly thought to be the exclusive province of humans.

Led by Timothy Q. Gentner, assistant professor of psychology at the University of California, San Diego, a study published in the April 27 issue of Nature demonstrates that starlings have the capacity to classify acoustic sequences defined by recursive, center-embedded grammars.

Recursive center-embedding refers to the common characteristic of human grammars that allows for the creation of new (and grammatically correct) utterances by inserting words and clauses within sentences – theoretically, without limit. So, for example, "Oedipus ruled Thebes" can become "Oedipus, who killed his father, ruled Thebes" or "Oedipus, who killed his father, whom he met on the road from Delphi, ruled Thebes," and so on.

Chomskian linguists have held that this recursive center-embedding is a universal feature of human language and, moreover, that the ability to process it forms the computational core of a uniquely human language facility.

"Our research is a refutation of the canonical position that what makes human language unique is a singular ability to comprehend these kinds of patterns," Gentner said. "If birds can learn these patterning rules, then their use does not explain the uniqueness of human language."

The research also contradicts the 2004 conclusions of W. Tecumseh Fitch and Marc D. Hauser based on the failure of cotton-top tamarin monkeys to learn similar grammar patterns after being exposed to strings of human speech.

"This result reinvigorates the search for the evolutionary substrates for language processing among the primates, and most excitingly gives us an animal model to probe deeper into these aspects of language," said Daniel Margoliash, who is a coauthor along with Kimberly M. Fenn and Howard C. Nusbaum at the University of Chicago.

Gentner and his coauthors created artificial starling songs that followed two different patterning rules: a "context-free" rule, which allows for a sound to be inserted in the middle of an acoustic string and is the simplest form of recursive center-embedding; and a "finite-state" rule, of the sort thought to account for all non-human communication, that allows for sounds to be appended only at the beginning or end of a string.

Capitalizing on the diverse range of sounds in starling songs, the researchers used recordings of eight different "warbles" and eight different "rattles" from a single male starling to construct a total of 16 artificial songs. Eight of these songs followed the context-free sequence AnBn (i.e. AABB or rattle-rattle-warble-warble) and eight followed the finite-state (AB)n (i.e. ABAB or rattle-warble-rattle-warble).

Eleven adult birds were then taught to distinguish these two sets of songs using classic reinforcement techniques. The birds were rewarded with food for pecking at a button when they heard a song from the context-free set and for refraining when they heard one from the finite-state set.

Nine of the starlings – after 10,000 to 50,000 trials over several months – eventually learned to distinguish the patterns.

When tested with different combinations of rattles and warbles that followed the same rules, the starlings performed well above chance, suggesting they had learned the abstract patterns and not just memorized the specific songs.

The researchers also checked to see how the birds responded to "ungrammatical" strings, ones that violated the established rules. The starlings treated these differently, as expected if they had learned the patterns.

The experimenters then asked if the birds were capable of a key feature of human grammars: Could the starlings extrapolate these patterning rules to distinguish among longer strings? Remarkably, Gentner said, after learning the patterns with songs made up of pairs of rattles and warbles, the birds were able to successfully recognize grammatical strings of three rattles-three warbles and four rattles-four warbles.

The finding that starlings can grasp even these simple grammatical rules, Gentner said, suggests that humans and other animals share basic levels of pattern recognition and also hints at the likelihood of other cognitive abilities we have in common.

"There might be no single property or processing capacity," Gentner and coauthors write, "that marks the many ways in which the complexity and detail of human language differs from non-human communication systems."

More generally, Gentner says, "The more closely we understand what nonhuman animals are capable of, the richer our world becomes. Fifty years ago, it was taboo to even talk about animal cognition. Now, there are Nova specials on the subject and no one doubts that animals have complex and vibrant mental lives. This study is a powerful statement about what even birds can do: Look at what they’re learning."

The experiments were performed at the University of Chicago when Gentner was a postdoctoral researcher there. The study is supported in part by a National Institutes of Health grant to Margoliash.

Gentner is now exploring the possibility of working with juvenile starlings, who (like human children) may be more adept than their full-grown counterparts at learning syntactical patterns.

A current study is also underway to see if starlings can apply the rules they’ve learned to novel stimuli – something humans are masters at doing. Early results suggest they don’t, leaving humans the reigning champs of generalizing from patterns.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>